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Abstract
We propose Recproofs, a Merkle-based vector commitment
that computes a batch proof of a subset of k leaves in a Merkle
tree of n leaves using recursive SNARKs. Our construction
folds the computation of the subset hash inside the compu-
tation of Merkle verification via canonical hashing. Due to
this folding, our batch proofs can be updated in logarithmic
time, whenever a Merkle tree element (belonging in the batch
or not) changes, by maintaining a data structure that stores
previously computed recursive proofs. Our batch proofs are
also computable in O(logn) parallel time. We also extend
our framework to provide updatable proofs for MapReduce
computations: A prover can commit to a memory M and pro-
duce a succinct proof for a MapReduce computation over a
subset I of M. The proof can be efficiently updated whenever
I or M changes. Updatable proofs find applications in the
blockchain space when a proof needs to be computed and
efficiently maintained over a moving stream of blocks (e.g.,
moving average). Our preliminary evaluation using Plonky2
shows that our approach has small memory footprint, signifi-
cantly outperforms previous approaches in terms of updates
(potentially up to 135×) and performs similarly with other
approaches in terms of aggregation time.

1 Introduction

A vector commitment is a cryptographic primitive that en-
ables a party to commit, via a small digest, to a vector M of n
slots in a way that an individual proof πi can be provided for
proving the correctness of an arbitrary vector slot M[i]. Vector
commitments have found applications in the blockchain space,
such as in Ethereum state compression (via Merkle Patricia
tries [1]), stateless validation [4], zero-knowledge proofs [20]
as well as in verifiable cross-chain computation [2]. A grow-
ing body of work on vector commitments (e.g., aSVC, AMT,
pointproofs [8, 17, 18]) has focused on optimizing the size of
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individual proofs as well as the size of batch proofs (A batch
proof is a proof that simultaneously proves a set of k vector
slots without paying a proof cost proportional to k and can
be typically computed by aggregating k individual proofs.)
Unfortunately, these vector commitments are not maintain-
able: Whenever a vector slot changes, Ω(n) time is required
to update all individual proofs, which can be a bottleneck for
many applications. Maintainable vector commitments on the
other hand [11,12,16,19] maintain a data structure that can be
used to update all proofs in logarithmic time—however, they
suffer from increased batch proof sizes and aggregation and
verification times. This work is focusing on designing main-
tainable vector commitments with small batch proof sizes
(45.13 KiB, independent of the batch size and the size of the
vector), fast updates to the batch proof (35.46 seconds for a
tree height of 29) and verification (8.76 ms).
The Merkle-SNARK approach. The basis of this work is the
celebrated Merkle tree data structure [12], which can serve as
a vector commitment. Merkle trees are naturally maintainable,
but have large individual proofs and more importantly, large
batch proofs. They can be turned into vector commitments
with small (batch) proofs via either one of the following two
Merkle-SNARK approaches that have been proposed in the
literature.

1. View the verification of the k Merkle tree proofs as a
whole computation circuit C, and apply a SNARK sys-
tem as a black box on C. This method was benchmarked
in the recent Hyperproofs [16] work by Srinivasan et al.
One of the drawbacks of this approach is that it is not
naturally parallelizable—it can only be parallelized to
the extent that the prover algorithm of the used SNARK
can be parallelized;

2. Build a SNARK circuit for the verification of a single
Merkle proof, but instead of verifying k SNARK proofs
natively, build a SNARK that verifies two leaf SNARK
proofs, leading to k/2 SNARK proofs. Use this method
recursively to eventually end up with a single proof that
verifies all k initial Merkle proofs. This technique was
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recently proposed by Deng and Du [7] and has the benefit
of being naturally parallelizable: The SNARK proofs at
the leaf level can be computed independently and in
parallel, and the same holds for the proofs of the next
level, leading to logn+ logk parallel complexity.

1.1 Our central contribution: Recproofs

We consider a dynamic setting for batch proofs: Assume
a batch proof for a subset I of leaves has been computed,
and consider a leaf x ∈ I or a leaf y /∈ I changes its value.
Clearly, the batch proof changes completely. The question
we are asking is whether we can update the batch proof in
time sublinear in k, i.e., without recomputing the proof from
scratch. This could have applications in settings where a batch
proof must be updated as new blocks are generated (e.g., while
computing a moving average for pricing). It is worth noting
that none of the directions above ((1) and (2)) can support
updatability: Every single change requires recomputation of
all the SNARK proofs from scratch.

We propose a new method to compute batch Merkle proofs
that allows efficient updates. In particular, by maintaining a
batch-specific data structure, the batch proof can be updated
in logn time per update. To the best of our knowledge, this
is the first construction for batch Merkle proofs that supports
efficient updates.

Our approach uses recursive SNARKs, but in a fundamen-
tally different way. Instead of computing individual SNARK
proofs for every Merkle proof (as in (2)), we run the recursion
directly on the Merkle paths that belong to elements in the
batch. While we are traversing the paths, we not only verify
that the elements belong to the Merkle tree but we also com-
pute a “batch” hash for the elements in the batch and make
this batch hash part of the public statement. We compute the
batch hash via canonical hashing, a deterministic and secure
way to represent any subset of k leaves succinctly (see Fig. 1).
If the recursive proof verifies, that means that the batch hash
corresponds to some valid elements of the tree, and can be
recomputed using the actual claimed batch as an input.

This technique naturally supports updates in O(logn) time,
just like Merkle trees support updates in O(logn) time: Given
a batch proof, one can keep a data structure with all the re-
cursive proofs corresponding to the interior nodes that were
computed. When a leaf changes (either in the batch or not),
the batch proof can be updated by traversing only the path that
corresponds to the changed element, and by reusing recursive
proofs for subtrees that were not affected by the change. Other
notions of updatability could also be possible, e.g., when the
indices participating in the batch change or when the Merkle
tree itself grows or shrinks.

Finally, we mention that an added benefit of our approach
is that it is naturally parallelizable with O(logn) parallel com-
plexity, as opposed to O(logn+ logk) that direction (2) above
has.

1.2 Second contribution: Dynamic verifiable
MapReduce

We observe that our technique can be generalized on verifying
MapReduce [6] computations on dynamic data: In particular,
we propose a technique that allows a prover to commit to
a memory M, and provide a proof of correctness for a fixed
MapReduce computation on any subset of M. Moreover, this
proof can be easily updated whenever the subset changes,
without having to recompute it from scratch. While recursive
SNARKs have been used before for MapReduce computa-
tions [5], we are the first to show how to verify MapReduce on
arbitrary subsets of memory, as well as how to update those
proofs.

1.3 Evaluation

We perform an initial evaluation of our approach. We use
Plonky2 [15] to implement our approach. Our preliminary
evaluation shows that our approach has a small memory
footprint, significantly outperforms previous approaches in
terms of updates (potentially up to 135×) and fast verification
(8.76 ms) and performs similarly with other approaches in
terms of aggregation time.

2 Preliminaries

Notation. Let λ be the security parameter and H de-
note a collision-resistant hash function. Let [n] = [0,n) =
{0,1, . . . ,n−1}, and r ∈R S denote picking an element from
S uniformly at random. Bolded, lower-case symbols such as
a = [a0, . . . ,an−1] typically denote vector of binary strings,
where ai ∈ {0,1}2λ,∀i ∈ [n]. If ai’s are arbitrarily long, we
use the H function to reduce it to a fixed size. |a| denotes the
size of the vector a.

Succinct Non-Interactive Argument of Knowledge [10].
Let R be an efficiently computable binary relation that con-
sists of pairs of the form (x,w), where x is a statement and w
is a witness.

Definition 2.1. A SNARK is a triple of PPT algorithms Π =
(Setup,Prove,Verify) defined as follows:

• Setup(1λ,R )→ (pk,vk): takes a security parameter
λ and the binary relation R and outputs a common
reference string consisting of the prover key and the
verifier key (pk,vk).

• Prove(pk,x,w)→ π : on input pk, a statement x and the
witness w, outputs a proof π.

• Verify(vk,x,π)→ 1/0: on input vk, a statement x, and
a proof π, it outputs either 1 indicating accepting the
argument or 0 for rejecting it.

It also satisfies the following properties:
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• Completeness: For all (x,w) ∈ R , the following holds:

Pr

(
Verify(vk,x,π) = 1

∣∣∣∣ (pk,vk)← Setup(1λ,R )

π← Prove(pk,x,w)

)
= 1

• Knowledge Soundness: For any PPT adversary A , there
exists a PPT extractor XA such that the following proba-
bility is negligible in λ:

Pr

(
Verify(vk,x,π)

∧R (x,w) = 0

∣∣∣∣ (pk,vk)← Setup(1λ,R )

((x,π);w)← A ∥XA ((pk,vk))

)

• Succinctness: For any x and w, the length of the proof π

is given by |π|=poly(λ) ·polylog(|x|+ |w|).

Merkle trees. Let M be a memory of n slots. A Merkle
tree [12] is an algorithm to compute a succinct, collision-
resistant representation C of M (also called digest) so that one
can provide a small proof for the correctness of any memory
slot M[i], while at the same time being able to update C in
logarithmic time whenever a slot changes. We assume the
memory slot values and the output of the H function have size
2λ bits each. The Merkle tree on an n-sized memory M can
be constructed as follows:

Without loss of generality, assume n is a power of two, and
consider a full binary tree built on top of memory M. For
every node v in the Merkle tree T , the Merkle hash of v, Cv,
is computed as follows:

1. If v is a leaf node, then Cv = index(v)||value(v)

2. If v has left child L and right child R, then Cv =
H(CL||CR).

The digest of the Merkle tree is the Merkle hash of the root
node. The proof for a leaf comprises hashes along the path
from the leaf to the root. It can be verified by using hashes in
the proof to recompute the root digest C.

2.1 Vector Commitments (VCs)

We formalize VCs below, similar to Catalano and Fiore [3].

Definition 2.2 (VC). A VC scheme is a set of PPT algorithms:

Gen(1λ,n)→ pp: Given security parameter λ and maximum vector size
n, outputs randomly-generated public parameters pp.

Compp(a)→ C: Outputs digest C of a = [a0, . . . ,an−1], where ai ∈
{0,1}2λ,∀i ∈ [n].

Openpp(i,a)→ πi: Outputs a proof πi for position i in a.

OpenAllpp(a)→ (π0, . . . ,πn−1): Outputs all proofs πi for a.

Aggpp(I,(ai,πi)i∈I)→ (πI ,ΛI): Combines individual proofs πi for val-
ues ai into an aggregated proof πI and batch-proof data structure ΛI .

Verpp(C, I,(ai)i∈I ,πI)→{0,1}: Verifies proof πI that each position i∈ I
has value ai against digest C.

UpdDigpp(u,δ,C,aux)→ C′: Updates digest C to C′ to reflect position
u changing by δ given auxiliary input aux.

UpdProofpp(u,δ,πi,aux)→ π′i: Updates proof πi to π′i to reflect posi-
tion u changing by δ given auxiliary input aux.

UpdBatchProofpp(u,δ,πI ,ΛI ,aux)→ (π′I ,Λ
′
I): Updates proof πi to π′i

and the witness ΛI to Λ′I to reflect position u changing by δ given auxiliary
input aux.

UpdAllProofspp(u,δ,π0, . . . ,πn−1)→ (π′0, . . . ,π
′
n−1): Updates all

proofs πi to π′i to reflect position u changing by δ.

We assume that all algorithms have access to pp of the
scheme. Observe that a Merkle tree can be considered as a
VC scheme.
Correctness and soundness. We define VC correctness in
Definition 2.3 and VC soundness in Definition 2.4.

Definition 2.3 (VC Correctness). A VC is correct, if
for all λ ∈ N and n = poly(λ), for all pp ← Gen(1λ,n),
for all vectors a = [a0, . . . ,an−1], if C = Compp(a), πi =
Openpp(i,a),∀i ∈ [0,n) (or from OpenAllpp(a)), and πI =
Aggpp(I,(ai,πi)i∈I),∀I ⊆ [n] then, for any polynomial num-
ber of updates (u,δ) resulting in a new vector a′, if C′ is the
updated digest obtained via calls to UpdDigpp, π′i proofs ob-
tained via calls to UpdProofpp or UpdAllProofspp for all i,
and π′I proofs obtained via calls to UpdBatchProofpp for all
subsets I then:

1. Pr[1← Verpp(C
′,{i},a′i,π′i)] = 1,∀i ∈ [n]

2. Pr[1 ← Verpp(C
′, I, (a′i)i∈I , Aggpp(I,(a′i,π

′
i)i∈I))] = 1,

∀I ⊆ [n].

Observation: At a high-level, correctness says that proofs
created via Open or OpenAll verify successfully via Ver, even
in the presence of updates and aggregated proofs.

Definition 2.4 (VC Soundness). ∀ PPT adversaries A ,

Pr


pp← Gen(1λ,n),

(C, I,J,(ai)i∈I ,(a′j) j∈J ,πI ,π
′
J)← A(1λ,pp) :

1← Verpp(C, I,(ai)i∈I ,πI) ∧
1← Verpp(C,J,(a′j) j∈J ,π

′
J) ∧

∃k ∈ I∩ J s.t. ak ̸= a′k

≤ negl(λ)
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Observation: Soundness says that no adversary can output
two inconsistent proofs for different values ak ̸= a′k at position
k with respect to an adversarially-produced digest d. Note
that such a definition allows the digest C to be produced
adversarially.

3 Recproofs

In this section, we present the Recproofs VC scheme, which
extends Merkle trees to provide updatable batch proofs. Re-
call that we assume, n = 2ℓ, where ℓ is the height of the tree.

To compute the commitment, C, of a vector a =
[a0, . . . ,an−1] in our scheme, we compute the Merkle tree
digest of a. The proof of opening for an index i in the vector
is the Merkle membership proof of leaf ai. We present the
algorithms of Recproofs in Fig. 2.

We now present the algorithm to aggregate proofs (§3.2) in
our scheme. Specifically, we first present canonical hashing
algorithm (§3.1), which we require to compute the batch proof
in our scheme.

3.1 Canonical hashing

The canonical hashing is a deterministic algorithm to com-
pute a digest of subset I of k leaves from a set of 2ℓ leaves.
We define the canonical hash of a node v of Merkle tree T
with respect to a subset I, denoted d(v, I), recursively as:

1. If v is a leaf node we distinguish two cases: If v’s index is
in I, then d(v, I) := index(v)||value(v) = Cv, otherwise
d(v, I) := 0.

2. If v has left child L and right child R, then d(v, I) :=
H(d(L, I)||d(R, I)), if d(L, I) · d(R, I) ̸= 0, otherwise
d(v, I) := d(L, I)+d(R, I).

Thus, the canonical digest of subset I (denoted as dI or,
simply, d) is the canonical hash of the root node of T for the
subset I. Note that when the subset I is unambiguous from
the context, we denote d(v, I) as dv.

3.2 Batch proofs

A batch proof is a single short proof that simultaneously
proves the opening of multiple elements in the vector. In
our scheme, a batch proof for some subset I ⊆ [n], is a single
recursive SNARK proof that proves the valid opening of all
the elements in I. Before we describe the precise circuit, we
present the NP statement for the batch proof:

“d is the root canonical digest with respect to some set of
leaves of some Merkle tree of ℓ levels whose root Merkle

digest is C.”

Recursive SNARK circuit. We present the circuit B that
the recursive SNARK proof verifies. We indicate below pre-
cisely what the public input of the circuit is and what the
(private) witness is. Note that the pseudocode below contains
the SNARK verification algorithm using key vkB —namely,
the fixed verification key (that does not change across recur-
sive calls) that corresponds to a SNARK computed on B .

Batch Proof, B
Public input: C,d, ℓ
Witness: (CL,dL, ℓL,πL) and (CR,dR, ℓR,πR)

Computation:

1. Check ℓ= ℓL +1 and ℓ= ℓR +1

2. Check C= H(CL||CR)

3. If dR ·dL ̸= 0 check d = H(dL||dR)
else check d = dL +dR

4. If ℓ= 1 and dL ̸= 0 check dL = CL

5. If ℓ= 1 and dR ̸= 0 check dR = CR

6. If ℓ > 1 and dL ̸= 0
Check Verify(vkB ,(CL,dL, ℓL),πL)

7. If ℓ > 1 and dR ̸= 0
Check Verify(vkB ,(CR,dR, ℓR),πR)

8. Return true

Computing the witness. Given a subset of indices to batch,
the witness required to compute the SNARK proof for circuit
B can be calculated by accessing all the values in the VC or
by accessing individual valid proofs of opening. For the sake
of simplicity, in the procedure described below, we assume
that all the vector values are available. However, we define a
procedure to compute the batch proof from individual proofs
in Fig. 2.

Given the subset I and the vector, we compute the witness
as follows:

1. Compute the Merkle tree on all the 2ℓ leaves. This out-
puts the Merkle hash Cv for all nodes v.

2. Compute the canonical hash d(v, I) for all nodes v with
respect to I.

3. Compute SNARK proofs from the lower levels of the
recursion back for use in the higher levels.

Observation: Note that from the definition of canonical hash-
ing and B , we do not need Merkle hashes and canonical
hashes of all the nodes in the tree. It is sufficient to calculate
the canonical and Merkle hashes of all the nodes along the
path from the leaf to the root and the Merkle hashes of all the
siblings along the way to the root (as depicted in Fig. 1).
Computing the batch proof. In the public parameters, we
run the setup of the SNARK: (pkB ,vkB)← Setup(1λ,B) for
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π

C=H(CL||CR)
H(H(H(a2)||H(a4||a5))||H(a15))

πL
CL =H(CLL||CLR)
H(H(a2)||H(a4||a5))

πLL
CLL =H(CLLL||CLLR)

H(a2)

CLLL =H(a0||a1)

a0 a1

πLLR
CLLR =H(a2||a3)

H(a2)

a2 a3

πLR
CLR =H(CLRL||CLRR)

H(a4||a5)

πLRL
CLRL =H(a4||a5)

H(a4||a5)

a4 a5

CLRR =H(a6||a7)

a6 a7

πR
CR =H(CRL||CRR)

H(a15)

πRL
CRL =H(CRLL||CRLR)

CRLL =H(a8||a9)

a8 a9

πRLR
CRLR =H(a10||a11)

a10 a11

πRR
CRR =H(CRRL||CRRR)

H(a15)

πRRL
CRRL =H(a12||a13)

a12 a13

πRRR
CRRR =H(a14||a15)

H(a15)

a14 a15

Level

4

3

2

1

0

Figure 1: Batch proof data structure. Consider a vector of size 8 and subset I = {2,4,5,15}. Recall that every leaf stores both index and value. Every node v in
the path from root to leaves of I, stores the Merkle hash, canonical hash with respect to I, and the recursive SNARK proof, and every sibling of v stores just the
Merkle hash.

the circuit B . Consider the set of indices I for which we are
calculating the batch proof. Let p1, p2, . . . , p|I| be the paths
from the leaves in I to the root of the Merkle tree. Clearly,
these paths are not disjoint. Let vi j, for j = 0, . . . , ℓ, denote
the j-th node of path pi, starting from level 0. To compute
the batch proof, we follow the procedure below. For all levels
m = 1, . . . , ℓ and for all paths pi where i = 1, . . . , |I| do:

For all distinct nodes v = vim with Merkle hash Cv,
canonical hash dv, with left child L (of Merkle hash CL,
canonical hash dL, proof πL) and right child R (of Merkle
hash CR, canonical hash dR, proof πR), compute:

πvim ← Prove(pkB ,(Cv,dv,m),(CL,dL,m−1,πL,CR,dR,m−1,πR))

The batch proof for subset I is the value πviℓ . This implies
that the recursive SNARK proof computed at the root of the
Merkle tree serves as the batch proof. The batch proof data
structure for a subset I, ΛI ,consist of all the Merkle hash
values, canonical hash values, and recursive SNARK proofs
computed along the nodes from leaves to the root, and the
Merkle hashes of all the siblings on the paths from leaves of
the subset to the root (as depicted in Fig. 1).
Complexity. Our approach has parallel complexity ℓ, indepen-
dent of |I|, whereas naive approaches have parallel complexity
ℓ+ log |I|. This is because we are folding the canonical hash-
ing computation inside the Merkle verification.
Security analysis. Here we outline the security argument to
demonstrate the soundness of both individual and aggregated
Recproofs.

Theorem 3.1 (Individual Recproofs are sound). Our individ-
ual logn-sized (non-aggregated) proofs from Fig. 2 are sound
as per Definition 2.4 assuming the collision resistance of the
hash function.

Proof sketch for Thm. 3.1. Since the individual Recproofs is
a Merkle proof of opening of an index in the vector, the secu-
rity argument of individual Recproofs directly follows from

the security of [12]. Say if an adversary A , returns a digest,
index i, and proof π, π′ (both accepted by the verifier). Then
it would require the adversary to find a collision in the hash
function, which is assumed to be computationally infeasible.

Theorem 3.2 (Batch Recproofs are sound). Our batch proofs
from §3.2 and Fig. 2 are sound as per Definition 2.4 under
the knowledge-soundness of the SNARK (Definition 2.1) and
collision resistance of the hash function.

Proof sketch for Thm. 3.2. To prove the security argument of
the batch proof: First we argue the soundness of the canonical
digest with respect to a subset I (chosen by the adversary).
That is, similar to Merkle digests, we argue that canonical
digest with respect to a subset is secure. Second we argue that
knowledge-soundness of the SNARK allows us to recursively
extract Merkle hash and canonical hash of all the nodes used in
computing the batch proof. Finally, we argue that computing
two valid batch proofs that open an index to different values
(under the same C) is similar to breaking the soundness of
individual Recproofs (Thm. 3.1). We defer the proofs to the
extended version of the paper.

3.3 Updates

Updating batch proofs. Note that a significant feature of
our construction is the support for dynamic batch proofs, i.e.,
the fact that one can update a batch proof (of a subset I),
when any leaf value changes (independently of whether a leaf
belongs to I or not). This feature has applications in the DeFi
space, e.g., when one wishes to maintain a proof for a moving
average for a contract variable (such as token price), as new
blocks are being created, without recomputing the new proof
from scratch. The main idea for maintaining a dynamic batch
proof is the following:
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Gen(1λ,n)→ pp: Let pp contain the following:
• A collision-resistant hash function H.
• (pk,vk)← Setup(1λ,B)

Compp(a)→ C: Return the digest of the Merkle tree.

Openpp(i,a)→ πi: Return the Merkle hash of the nodes that are required
to reconstruct the path from ai to root.

OpenAllpp(a)→ (π0, . . . ,πn−1): Return the Merkle tree.

Aggpp(I,(ai,πi)i∈I)→ (πI ,ΛI):
• Compute C using any πi

• Compute the partial Merkle hash tree T ′ using πi’s
• For every node v in T ′:

– Compute the canonical hash d(v, I)
– Compute the recursive SNARK proof πv (as described in §3.2)
– Augment v with d(v, I) and πv

• Return the recursive SNARK proof computed at the root as πI and
augmented tree T ′ as ΛI

Verpp(C, I,(ai)i∈I ,πI)→{0,1}:
• Compute dI

• Return Verify(vkB ,(C,dI , ℓ),πI)

UpdDigpp(u,δ,C,aux)→ C′:
• Parse aux as πu

• Return the root of the Merkle hash path recomputed after updating
au +δ

UpdProofpp(u,δ,πi,aux)→ π′i:
• Parse aux as πu

• Recompute the Merkle hash path after updating au +δ

• Update affected portions of πi with the recomputed hash path

UpdBatchProofpp(u,δ,πI ,ΛI ,aux)→ (π′I ,Λ
′
I):

• Parse aux as πu

• Recompute the Merkle hash path after updating au +δ

• For every node v in ΛI affected by the update:
– Update the Merkle hash value
– Recompute the canonical hash d′(v, I), if necessary
– Recompute the recursive SNARK proof π′v (as described in §3.3)

UpdAllProofspp(u,δ,π0, . . . ,πn−1)→ (π′0, . . . ,π
′
n−1):

• Parse aux as πu

• Recompute the Merkle hash path after updating au +δ

Figure 2: Algorithms for Recproofs

1. After the computation of the batch proof, we do not
discard the batch proof data structure, which contains the
recursive SNARK proofs, Merkle hashes, and canonical
hashes in a tree-like data structure.

2. Whenever a leaf value changes, we distinguish two cases:
a) the element belongs to the batch, in which case the
canonical hash will change; b) the element does not
belong to the batch, in which case the canonical hash
will not change. But in both cases the recursive SNARK
proofs, Merkle hashes, and the batch proof will change.
To update it efficiently, we identify which nodes of the
batch data structure are affected, and we spend logn time
updating the batch proof data structure, which in the end
will give the updated dynamic batch proof.

With this approach, we can update a batch proof of k ele-
ments in time O(logn), instead of spending time O(k logn)
that previous approaches would require.
Updating the batch. Say an element a j does not belong to
the batch I. Given the valid proof π j and the batch proof
data structure ΛI , it is possible to compute the batch proof
of the set I′ = I∪{ j}. To update the batch proof efficiently,
we identify the nodes of the batch proof data structure that
are affected. Then, we compute and update the Merkle tree
hashes, canonical hashes, and the recursive SNARK proof for
all the nodes along the path from a j to the root of the batch
proof data structure. Similarly, we can remove an element a j
from the batch, by pruning the batch proof data structure and
recomputing the values stored in the nodes of the affected
portion of the tree.
Updating digests and individual proofs. Say ai changes to
a′i. With the valid proof of ai, πi, under commitment C, it is
possible to compute the updated commitment C′, by recom-
puting the Merkle hashes from a′i to the root of the Merkle
tree. The updated Merkle hashes along the path to the root can
also be used to update any proof by updating just the portions
of the proof that intersect.

3.4 Optimized recproofs circuit
Recall that in SNARKs, the prover incurs the overhead of
both branches of the conditionals regardless of the branch that
is executed. Observe that the prover incurs the overhead of the
conditionals in steps 6 and 7 (§3.2) in B even when computing
the SNARK proofs at level 1 do not involve the expensive
SNARK verification. To remove this overhead, we decompose
B into two smaller circuits: One for proof computation in the
base case (denoted as B ′′) and the other for the rest of the
computation (denoted as B ′). We describe the decomposed
circuits here:

Base case, B ′′

Public input: (C,d)
Witness: (CL,dL) and (CR,dR)

Computation:

1. Check C= H(CL||CR)

2. If dR ·dL ̸= 0 check d = H(dL||dR)
else check d = dL +dR

3. If dL ̸= 0 check dL = CL

4. If dR ̸= 0 check dR = CR

5. Return true

Optimized batch proof, B ′

Public input: (C,d)

6



Witness: (CL,dL,πL), (CR,dR,πR), and vk

Computation:

1. Check C= H(CL||CR)

2. If dR ·dL ̸= 0 check d = H(dL||dR)
else check d = dL +dR

3. Check if vk is either vkB ′′ or vkB ′

4. If dL ̸= 0 check Verify(vk,(CL,dL),πL)

5. If dR ̸= 0 check Verify(vk,(CR,dR),πR)

6. Return true

Note that one key difference between B and B ′ is that B ′ takes
the verification key as input to the circuit to accommodate the
fact that we are using two circuits.

Computing the witness and batch proof. The procedure to
compute the witness for the optimized circuits is identical
to the procedure explained in §3.2. However, in the public
parameters, we run the setup for both circuits B ′′ and B ′ as
follows: (pkB ′′ ,vkB ′′)← Setup(1λ,B ′′) and (pkB ′ ,vkB ′)←
Setup(1λ,B ′) for the circuit B ′′ and B ′, respectively.

Consider the set of indices I for which we are calculating
the batch proof. Let p1, p2, . . . , p|I| be the paths from the
leaves in I to the root of the Merkle tree. Clearly, these paths
are not disjoint. Let vi j, for j = 0, . . . , ℓ, denote the j-th node
of path pi, starting from level 0. To compute the batch proof,
we follow the procedure below. For all levels m = 1, . . . , ℓ
and for all paths pi where i = 1, . . . , |I| do:

For all distinct nodes v = vim with Merkle hash Cv,
canonical hash dv, with left child L (of Merkle hash CL,
canonical hash dL, proof πL) and right child R (of Merkle
hash CR, canonical hash dR, proof πR), compute:

If m = 1

πvim ← Prove(vkB ′′ ,(Cv,dv),(CL,dL,CR,dR))

If m = 2

πvim ← Prove(vkB ′ ,(Cv,dv),(CL,dL,πL,CR,dR,πR,vkB ′′))

Otherwise

πvim ← Prove(vkB ′ ,(Cv,dv),(CL,dL,πL,CR,dR,πR,vkB ′))

The batch proof for subset I is the value πviℓ .

3.5 Batch Proofs for q-ary Trees
We now present the algorithm to batch proofs in q-ary trees.
First, we present the generalized canonical hashing algorithm
and then present the batch proof computation circuit. For
simplicity, we assume that the q-ary tree is balanced of height
ℓ. However, we remark that our approach can be generalized
to incorporate Merkle Patricia Tries (MPT) in practice [1].

Canonical hashing. We describe the canonical hashing algo-
rithm to compute a digest of subset I of k leaves from a set of
n = qℓ leaves. We define the canonical hash of a node v of a
q-ary Merkle tree T with respect to a subset I, denoted d(v, I),
recursively as:

1. If v is a leaf node we distinguish two cases: If v’s in-
dex belongs in I, then d(v, I) := index(v)||value(v) =Cv,
otherwise d(v, I) := 0.

2. If v has children w1, . . . ,wq, then d(v, I) :=
H(d(w1, I)|| . . . ||d(wq, I)), if at least two children
are non-zero, otherwise d(v, I) = ∑

q
b=1 d(wb, I).

Thus, the canonical digest of subset I is the canonical hash of
the root node of T for the subset I.
Recursive SNARK circuit. We present the circuit Q for the
same NP statement in §3.2, however, for a q-ary tree.

Batch Proof, Q
Public input: C,d, ℓ
Witness: (Cb,db, ℓb,πb)b∈[1,q]

Computation:

1. Check C= H(C1|| . . . ||Cq)

2. If (db ̸= 0∧db′ ̸= 0)∃b,b′∈[1,q]:b̸=b′

Check d = H(d1|| . . . ||dq)
else check d = ∑

q
b=1 db

3. For all b ∈ [1,q]

(a) Check ℓ= ℓb +1
(b) If ℓ= 1 and db ̸= 0 check db = Cb

(c) If ℓ > 1 and db ̸= 0
Check Verify(vkQ ,(Cb,db, ℓb),πb)

4. Return true

Computing the witness and batch proof. The procedure to
compute the witness and batch proof in q-ary trees closely
resembles the batch proof computation explained in §3.2. For
all distinct nodes v at level m in the q-ary tree with Merkle
hash Cv, canonical hash dv, with q children (of Merkle hash
Cb, canonical hash db, proof πb for all b ∈ [1,q]), compute:

πv← Prove(pkQ ,(Cv,dv,m),(Cb,db,m−1,πb)b∈[1,q])

The batch proof will be the value πr, where r is the root
node of the q-ary tree.
Complexity. Our approach has parallel complexity ℓ, indepen-
dent of |I|, whereas naive approaches have parallel complexity
ℓ+ logq |I|. This is because we are folding the canonical hash-
ing computation inside the Merkle verification.

4 Verifiable MapReduce

Our approach to batch proof can be extended to prove the
correctness of MapReduce-style [6] computation on dynamic
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data. The maintainability property of our construction allows
us to efficiently recompute the proof of correctness even when
the underlying data changes. This contrasts the need for re-
computing from scratch in naive approaches.

Let D and R denote the domain of the input and output
of the computation, respectively. We consider the following
abstraction for MapReduce:

• Map : D→ R
• Reduce : R ×R → R

We remark that the Reduce operation can also take just a
single input. In such cases, we assume the existence of an
identity element, e, for the Reduce operation.

Assume we want to execute the MapReduce computation
on a subset I ⊆ [n] of the memory slots which have d as
their canonical digest. We present the recursive algorithm that
checks the validity of the following NP statement:

“out is the output of the MapReduce computation on some
set of leaves which (i) have d as their root canonical index

digest; (ii) belong to some Merkle tree of ℓ levels whose root
Merkle digest is C.”

We present the circuit M that verifies the correctness of
the MapReduce computation.

MapReduce, M
Public input: (out,C,d, ℓ)
Witness: (outb,Cb,db, ℓb,πb)b∈{L,R}

Computation:

1. Check C= H(CL||CR)

2. If dR ·dL ̸= 0
Check d = H(dL||dR)

else
Check d = dL +dR

3. Check out= Reduce(outL,outR)

4. For all b ∈ {L,R}
(a) Check ℓ= ℓb +1
(b) If ℓ= 1 and db ̸= 0

Parse Cb as index||value
Check db = Cb and outb =Map(value)

(c) If ℓ > 1 and db ̸= 0
Check Verify(vkM ,(outb,Cb,db, ℓb),πb)

5. Return true

Computing the witness and MapReduce proof. The pro-
cedure to compute the witness for the M is similar to the
procedure explained in §3.2. However, we additionally com-
pute the output of the MapReduce computation along with
canonical hash d(v, I) for nodes along the path from leaves
in the subset to the root of the tree. Whenever, the canonical
hash of a node is 0, we set the result of the MapReduce as
identity element e. For all distinct nodes v at level m in the

tree with Merkle hash Cv, canonical hash dv, and MapReduce
result outv (of Merkle hash Cb, canonical hash db, proof πb,
and MapReduce result outb for all b ∈ {L,R}), compute:

πv← Prove(pkM ,(outv,Cv,dv,m),(outb,Cb,db,m−1,πb)b∈{L,R})

The proof of correct MapReduce computation will be the
value πr, where r is the root node of the tree.

5 Applications

In this section, we specifically discuss how the ideas of batch
proofs in Recproofs can be used to prove the correctness
of MapReduce computation over large amounts of dynamic
on-chain state data. Recproofs are generalizable to the Merkle-
Patricia Tries used by popular blockchains, such as Ethereum,
to store smart contract states. The updatability of Recproofs
makes them a powerful primitive for proving expensive and
long-running computations on the continually updating data
structures used by blockchains.
Aggregated public keys. Consider the following setting: Say
BLS public keys of n validators are stored in the memory of
a smart contract. Now the goal is to calculate the aggregated
public key of a subset of validators, denoted as I, and the car-
dinality of this subset I to establish the fraction of validators
that have signed the message. However, subset I can change
across blocks. The problem of computing aggregated public
key and the cardinality on-chain is useful in emerging real-
world blockchain systems (E.g., Proofs of Ethereum Beacon
Chain consensus or EigenLayer restaking). In these systems,
validators attest to the results of some specific computational
task, and a new tasks can arrive periodically. An existing ap-
proach is to attach a SNARK proof along with the aggregated
public key and the cardinality of the attestor subset. However,
this requires recomputing the SNARK proof from scratch
every time when the subset changes. Additionally, this also
requires computing a new proof from scratch whenever the
set changes even if the subset stays the same..

MapReduce proofs for aggregated public keys. At a high-level,
we need to prove the following NP statement: “(k,apk) is the
output of the MapReduce computation on some set of leaves
which belong to some Merkle tree of n = 2ℓ BLS public
keys whose root Merkle digest is C.” This statement can be
efficiently proved using batching techniques from Recproofs
even when the subset changes.

Let G be the elliptic curve group for the BLS public
keys, Z be the set of integers. Let the input and output
domain of MapReduce be G and Z×G, respectively. Let
e = (0,1) ∈ Z×G denote the identity element in R . We
define the MapReduce functions as follows:

• Map: Takes a public key gsk, returns (1,gsk), if sk has
signed the message, else e.

• Reduce: Takes two elements (a,gsk1) and (b,gsk2) from
R , and returns (a+b,gsk1+sk2).
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Figure 3: Batch proof data structure to compute the aggregated BLS public
key and cardinality of the attestor set. Consider a vector of size 8 and attestor
subset I = {2,4,5}. Recall that every leaf stores both index and value, how-
ever, we omit this detail (and canonical hashes of every node) for simplicity.
Every node v in the path from root to leaves of I, stores the Merkle hash, the
recursive SNARK proof, and results of Map or Reduce operation, and every
sibling of v stores just the Merkle hash.

To prove the correctness of the aggregate public key and
subset cardinality, we compute the correctness proof for the
MapReduce computation using the circuit M described in §4.
We depict the maintainable data structure for the MapReduce
computation in Fig. 3. Thus, any verifier can check validity of
this proof of correctness using the reported apk,k,n. When-
ever the attestor subset changes, we can simply update the
path from leaf to root to compute the new proof of correctness
in m logn time (using the data structure in Fig. 3), instead of
recomputing from scratch, where m is the number of updates
to the subset I.

Digest translation. Digest translation is an emerging solution
where a cryptographic proof argues that the Merkle digests C1
and C2 computed using hash functions H1 (e.g., SHA-2) and
H2 (e.g., Poseidon), respectively, corresponds to the same n
values, which can change over time. This cryptographic proof
is useful in zk-rollups as any inclusion proof based on SHA-2
is inefficient to verify inside the zk-VM. To get around this
limitation every inclusion proof submitted to the zk-rollup can
be computed using a Poseidon hash function and all inclusion
proofs sequenced in a batch would additionally just need a
proof of digest translation to verify against the Merkle digest
computed using SHA-2. An approach is to have a recursive
SNARK proof that takes the proof of digest translation from
the previous state, inclusion proofs under both hash functions,
and the updated value and digest to compute an updated proof
of digest translation using recursive SNARKs. However, this
approach is not parallelizable as each update to the tree has
to be computed sequentially in the proof one at time.

MapReduce proofs for digest translation. Say a Merkle is
constructed using hash function H1, and let the Merkle digest
be C1. To compute a digest translation proof to argue that
C2 is the Merkle digest when computed using H2, we need
to prove the following NP statement: “C2 is the output of

the MapReduce computation on all leaves which belong to
some Merkle tree of ℓ levels whose root Merkle digest is C1.”
This statement can be efficiently proved using the MapReduce
proofs (§4) even when the subset changes.

Let H and U denote the hash space of H2 and domain of
leaf values of the tree, respectively. Let the input and output
domain of MapReduce be U and H , respectively. Let e =
0 ∈H denote the identity element in R .

We define the MapReduce functions as follows:
• Map: An identity function. Takes a leaf data and returns

the same. Recall that for simplicity we assume that both
U and H are {0,1}2λ.

• Reduce: Takes two elements a,b ∈H and returns c :=
H2(a||b) ∈H .

We set I as the entire set of indices [n], as this new digest C2
is computed over all leaves. To prove the correctness C2, we
compute the correctness proof for the MapReduce computa-
tion using the circuit M described in §4. Thus, any verifier
can check validity of this MapReduce proof using the re-
ported C2,C1. Whenever the values in the vector changes,
we can simply update the path from leaf to root to compute
the new proof of correctness in m logn time (using the data
structure similar to Figs. 1 and 3), instead of recomputing
from scratch, where m is the number of updates. Addition-
ally, our updates are parallelizable as multiple updates can
be applied one level at time. This approach can be applied to
digest transformations involving both the changing of hash
functions and the changing of the serialization structures used
for leaf and branch elements.

Observation. Note that in both of the discussed applications,
the public statement doesn’t require the inclusion of the canon-
ical digest. Thus demonstrating knowledge of the subset is
adequate for these use-cases.

Other applications. Our MapReduce proofs can applied to
real-world applications involving decentralized finance (DeFi)
that require computation over on-chain states that spans multi-
ple concurrent blocks. Examples of these applications include
calculating moving averages of asset prices, lending market
deposit rates, credit scores or airdrop eligibility. In these ap-
plications, a computation must be applied across the states of
a contract or group of contracts for the n most recent blocks
of a given blockchain, where n is a fixed number. These com-
putations must then be updated continually whenever a new
blocks is added to the blockchain. The natural updatability of
Recproofs allows it to be extended to use-cases where a proof
must be generated across tens of thousands of consecutive
blocks of historical data.

For example, an on-chain options protocol may want to
price an option using the volatility of an asset over the past n
blocks on a decentralized exchange on Ethereum. The proof
of the volatility must then be updated every 12 seconds as
new blocks are added. The naive approach would require com-
puting a proof of the volatility across the past n blocks from
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Figure 4: The x-axis is # of proofs being aggregated. We extrapolate the
Merkle SNARK numbers for batch size beyond 212 due to large memory
overhead. We use the 128-bit variant of Poseidon.

scratch, every 12 seconds. With Recproofs, this computation
would only require updating the portion of the proof associ-
ated with the computation done on the oldest block with a
proof of computation done on the new block.

6 Evaluation

In this section, we present our initial preliminary evaluation
results. We defer the full performance analysis of our algo-
rithms to the extended version of the paper. We compare the
performance of our batch update and aggregation technique
against two baselines (§6.1): (1) Naive Merkle proof aggre-
gation using SNARKs [14] and (2) Inner-product arguments
based aggregation in Hyperproofs [16].

Our implementation is based on Rust (nightly-2023-03-06)
and we use Plonky2 [15] for our batch proof construction.
Thus a field element corresponds to a 64-bit value from the
Goldilocks field. We run our experiments on Amazon EC2
c5a.8xlarge instance, which has 32 cores and 64 GiB RAM.
Except the SNARK provers (both Bellman and Plonky2),
our experiments are single-threaded and report the average
running times of 10 runs.

Recall that each leaf of Recproofs tree is a concatenation
of the index and value. In our implementation, each vector
element is a random 256 bit value and we allocate 64 bits to
the index. Thus, each leaf is 40 bytes long. The Merkle tree
in our construction uses Poseidon hash function [9].

6.1 Batch updates and aggregation.
In this subsection, we present the performance of our batch
update and aggregation. Recall that aggregation combines
multiple individual proof into a single batch proof.

Experimental setup. We set the height of the tree to ℓ= 29
and study the performance of our scheme for varying batch
sizes k = {22,24, . . . ,214}. For baseline comparison, we use
the following:

1. Merkle SNARKs: We use a fork of the Rust implemen-
tation by Ozdemir et al. that was used in Hyperproofs
to benchmark Merkle SNARKs [13, 14, 16]. We remark

that the prover uses the standard parallelism available in
Bellman to compute the Groth16 proofs.

2. Hyperproofs: We use the golang based implementation
that was provided in Hyperproofs [16].

We compare the performance of Recproofs in the following
settings:

1. Standard: In this implementation of aggregation, each
node of the batch proof data structure is constructed
sequentially.

2. Distributed proof generation: In this implementation of
aggregation, we distribute the prover effort to construct
a node in the batch proof data structure to a cluster of
machines. That is, for every level in the batch proof data
structure, a leader distributes the task of computing the
recursive SNARK proofs to multiple followers. Thus,
multiple followers can, in parallel, work on a level of
the batch proof data structure. In our setting, we use a
cluster of 100 machines (16 Core, 16 GiB RAM).

In each run, we randomly generate a Merkle tree and select a
random set of leaves to batch/update.

Prover time. The tree structure of our construction presents
avenues for parallelism. Thus by distributing the proof genera-
tion, as shown in Fig. 4(a), we observe a 3.4× to 10.6× faster
prover time than the standard implementation of Recproofs
for batch sizes between 26 to 214.

Groth16 [10] based Merkle SNARKs aggregation is around
3× faster than Recproofs for batch size 214. The main limita-
tion of this approach is that the batch size is predetermined
during the setup of the SNARK. Thus any change to batch
size requires a new Groth16 setup. We discuss this in detail
in batch updates. The aggregation of Hyperproofs outper-
forms other approaches. However, Hyperproofs trades this for
a large proof size and increased verification times.

Verification time and proof size. The batch proofs in our
scheme is 45.13 KiB. This single Plonky2 proof can verify
the entire batch. To verify a batch proof, the verifier first needs
to compute the canonical digest of the batch. Then the verifier
invokes the Plonky2 verifier with the computed canonical
digest and the digest of the vector to check the validity of
the proof. In our experiments, for a batch size of 210 proofs,
it takes 2.21 ms to compute the canonical digest and 6.55
ms to verify the Plonky2 proof. However, a batch proof in
Hyperproofs is 52 KiB and takes around 11.08 seconds to
verify. We defer the gas cost analysis to the extended version
of the paper.

Batch updates. In our experiments, we randomly sample
an element from the batch to update. Here we present the
prover cost to update a batch proof. Updating a batch proof
in Recproofs involves re-computing the recursive SNARK
proofs along the path from leaf to the root. Thus, it is possible

10



to update the batch proof in logarithmic time. We observe
that the cost of updating a single proof within a batch of 214

values is 35.46 seconds.
However, both Merkle SNARKs and Hyperproofs do not

support updatable batch proofs. Thus, both these schemes
have to recompute the batch proof from scratch whenever an
element in the batch changes. For a batch size of 214 values,
Merkle SNARKs and Hyperproofs require 25.62 and 19.45
minutes, respectively, to recompute the batch proof. Thus, as
show in Fig. 4(b), Recproofs is around 43× and 33× faster
than Merkle SNARKs and Hyperproofs, respectively when
the batch is 214.

Besides updating an element inside the batch, our con-
struction can also efficiently update the size of the batch. In
contrast, both Merkle SNARKs and Hyperproofs require an
apriori bound on the maximum size of the batch. Addition-
ally, Merkle SNARKs incur proving cost proportional to the
maximum batch size regardless of the number of elements
in the batch. Whenever the batch size is insufficient, Merkle
SNARKs require a setup with new “powers-of-tau” and circuit
specific parameters. Recproofs does not suffer this limitation,
allowing for flexibility in adjusting the batch size as required.

We estimate the cost of running a fresh Groth16 setup and
computing a SNARK proof whenever the batch size is insuffi-
cient in Merkle SNARKs. The bellman-bignat [13] repository
used in the our benchmarks return the cost of initialization,
parameters generation, and circuit synthesis along with the
prover overhead. For a batch size 214, the setup overhead is
estimated around 54 minutes and the prover overhead is 25
minutes. However, in Recproofs the updates can be performed
in 35.46 seconds. Thus, whenever a prover requires a new
Groth16 circuit to accommodate larger batch sizes. say 214,
we estimate that our performance will likely be up to 135×
faster.
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