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ABSTRACT

We propose Reckle trees, a new vector commitment based on suc-

cinct RECursive arguments and MerKLE trees. Reckle trees’ dis-

tinguishing feature is their support for succinct batch proofs that

are updatable—enabling new applications in the blockchain setting

where a proof needs to be computed and efficiently maintained

over a moving stream of blocks. Our technical approach is based

on embedding the computation of the batch hash inside the re-

cursive Merkle verification via a hash-based accumulator called

canonical hashing. Due to this embedding, our batch proofs can be

updated in logarithmic time, whenever a Merkle leaf (belonging

to the batch or not) changes, by maintaining a data structure that

stores previously-computed recursive proofs. Assuming enough

parallelism, our batch proofs are also computable in𝑂 (log𝑛) paral-
lel time—independent of the size of the batch. As a natural extension

of Reckle trees, we also introduce Reckle+ trees. Reckle+ trees pro-

vide updatable and succinct proofs for certain types of Map/Reduce

computations. In this setting, a prover can commit to a memory M
and produce a succinct proof for a Map/Reduce computation over

a subset 𝐼 ofM. The proof can be efficiently updated whenever 𝐼 or

M changes.

We present and experimentally evaluate two applications of

Reckle+ trees, dynamic digest translation and updatable BLS aggre-

gation. In dynamic digest translation we are maintaining a proof of

equivalence between Merkle digests computed with different hash

functions, e.g., one with a SNARK-friendly Poseidon and the other

with a SNARK-unfriendly Keccak. In updatable BLS aggregation we

maintain a proof for the correct aggregation of a 𝑡-aggregate BLS

key, derived from a 𝑡-subset of a Merkle-committed set of individual

BLS keys. Our evaluation using Plonky2 shows that Reckle trees

and Reckle+ trees have small memory footprint, significantly out-

perform previous approaches in terms of updates and verification

time, enable applications that were not possible before due to huge

costs involved (Reckle trees are up to 200 times faster), and have

similar aggregation performance with previous implementations

of batch proofs.

1 INTRODUCTION

A Merkle tree [15] is a seminal cryptographic data structure that

enables a party to commit to a memory M of 𝑛 slots via a succinct

digest 𝑑 . A third party with access to 𝑑 can verify correctness of

any memory slot M[𝑖] via a log𝑛-sized and efficiently-computable

proof 𝜋𝑖 . Merkle trees can be used to verify untrusted storage ef-

ficiently, and have found many applications particularly in the

blockchain space, such as in Ethereum state compression via Merkle
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Patricia Tries (MPTs) [1], stateless validation [6], zero-knowledge

proofs [24] as well as in verifiable cross-chain computation [2].

Many applications that work with Merkle trees require the use

of a Merkle batch proof. A Merkle batch proof 𝜋𝐼 is a single proof

that can be used to prove multiple memory slots {M[𝑖]}𝑖∈𝐼 at once.
When the slots are consecutive, Merkle batch proofs (also called

Merkle range proofs) have logarithmic size, independent of the

batch size |𝐼 |. In the general case of arbitrary set 𝐼 though, a Merkle

batch proof comprises 𝑂 ( |𝐼 | log𝑛) hashes. For blockchain applica-

tions that must prove thousands of transactions at once, the lack of

succinctness of Merkle batch proofs tends to become an issue.

Updatable Merkle batch proofs. One distinguishing feature of

Merkle trees is their support for extremely fast updates: If a memory

slotM[ 𝑗] of the committed memoryM changes, a batch proof 𝜋𝐼 (as

well as the whole Merkle tree) can be updated in logarithmic time

with a simple algorithm. This is particularly useful for applications.

For instance, when new Ethereum blocks are created and new

memory is allocated for use by smart contracts, Ethereum nodes

can update their local MPTs (which are 𝑞-ary unbalanced Merkle

trees), very fast.

Unfortunately (and as mentioned before), while Merkle trees

support blazingly-fast updates of batch proofs, their batch proofs

are not succinct, i.e., their size depends on |𝐼 |. The motivation and

initial focus of this paper is on this very issue.

Can we build succinct Merkle batch proofs that are

efficiently updatable?

This question relates to the notion of updatable SNARKs (e.g.,[12]),

that, to the best of our knowledge, we put forth for the first time. An

updatable SNARK is a SNARK that is equipped with an additional al-

gorithm 𝜋 ′ ← Update((𝑥,𝑤), (𝑥 ′,𝑤 ′), 𝜋). AlgorithmUpdate takes
as input a true public statement 𝑥 along with its witness 𝑤 and

its verifying proof 𝜋 as well as an updated true public statement

𝑥 ′ along with the updated witness𝑤 ′. It outputs a verifying proof

𝜋 ′ for 𝑥 ′ without running the prover algorithm from scratch and

ideally in time proportional to the distance (for some definition of

distance) of (𝑥,𝑤) and (𝑥 ′,𝑤 ′).
While we are not solving the problem in its generality, we provide

constructions that handle important classes of functions, such as

batch proofs and Map/Reduce-style computations over Merkle trees

(See applications in Section 1.2.)

1.1 Our contribution: Reckle Trees

We introduce Reckle Trees, a new vector commitment scheme [5]

that supports updatable and succinct batch proofs using RECursive
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SNARKs
∗
and MerKLE trees (A vector commitment is a crypto-

graphic abstraction we use for “verifiable storage” and which can

be implemented, for example, by both Reckle trees and Merkle

trees.)

Reckle Trees can work under a fully-dynamic setting for batch

proofs: Assume a Reckle batch proof 𝜋𝐼 for a subset 𝐼 of memory

slots has been computed. Reckle Trees can support the following

updates to 𝜋𝐼 in logarithmic time: (a) change the value of element

M[𝑖], where 𝑖 ∈ 𝐼 ; (b) change the value of element M[ 𝑗], where
𝑗 ∉ 𝐼 ; (c) extend the index set 𝐼 to 𝐼 ∪𝑤 so thatM[𝑤] is also part of
the batch; (d) remove index𝑤 from 𝐼 so thatM[𝑤] is not part of the
batch; (e) remove or add an element from the memory altogether

(In this case, Reckle Trees can rebalance following the same rules

of standard data structures such as red-black trees or AVL trees.)

Updating a batch proof 𝜋𝐼 in Reckle Trees is achieved through

a batch-specific data structure Λ𝐼 that stores recursively-computed

SNARKs proofs. Importantly, Reckle Trees, just as Merkle trees,

are naturally parallelizable. Assuming enough parallelism, any num-

ber of updates𝑇 > 1 can be performed in𝑂 (log𝑛) parallel time. As

we will see, our massively-parallel Reckle Trees implementation

achieves up to 270× speedup over our sequential implementation.

Reckle Trees also have particularly low memory requirements:

While they can make statements about 𝑛 leaves, their memory re-

quirements (excluding the underlying linear-size Merkle tree) scale

logarithmically with 𝑛. Finally, Reckle trees have the flexibility of

not being tied to a specific SNARK: If a faster recursive SNARK im-

plementation is introduced in the future (e.g., folding schemes [13]),

Reckle trees can use the faster technology seamlessly.

Our main technical approach. Let 𝐼 be the set of Merkle leaf

indices for which we wish to compute the batch proof. Starting from

the leaves 𝑙1, . . . , 𝑙 |𝐼 | that belong to the batch 𝐼 , Reckle Trees run

the SNARK recursion on the respective Merkle paths 𝑝1, . . . , 𝑝 |𝐼 | ,
merging the paths whenever common ancestors of the leaves in 𝐼

are encountered.While the paths are being traversed, Reckle Trees

not only verify that the elements in 𝐼 belong to the Merkle tree but

they also compute a “batch” hash for the elements in 𝐼 , eventually

making this batch hash part of the public statement. The batch hash

is computed via canonical hashing, a deterministic and secure way

to represent any subset of |𝐼 | leaves succinctly (see Fig. 1). While

we could have used any number-theoretic accumulator (e.g., [3]) (or

even the elements in the batch themselves), we choose canonical

hashing to avoid encoding algebraic statements within our circuits

(and to ensure our circuits’ size never depends on the size and

topology of the batch). If the final recursive proof verifies, that

means that the batch hash corresponds to a valid subset of elements

in the tree, and can be recomputed using the actual claimed batch

as an input. In summary, the main difference with the Merkle tree

construction is that every node 𝑣 in a Reckle tree, in addition to

storing a Merkle hash C𝑣 , can also store a recursively-computed

SNARK proof 𝜋𝑣 , depending on whether any of 𝑣 ’s descendants

belongs to the batch 𝐼 in question or not (For nodes that have no

descendants in the batch, there is no need to store a SNARK proof.)

∗
A recursive SNARK is a SNARK (e.g., [12]) that can call its verification algorithm

within its circuit. While all SNARKs are recursive (in theory), certain SNARKs have

been optimized for recursion, e.g., via the use of special curves. Our implementation is

using Plonky2 [18], but our framework can use any recursive SNARK.

Our approach can be easily extended to unbalanced 𝑞-ary Merkle

trees (that model Ethereum MPTs) as we show in Section 3.8.

Map/Reduce proofs with Reckle+ Trees. Reckle trees, just

like Merkle trees, can only be used to prove memory content, but

no computation over it. However one might want to compute an

updatable proof for some arbitrary computation over the Merkle

leaves, e.g., counting the number of Merkle leaves 𝑣 satisfying an

arbitrary function 𝑓 (𝑣) = 1. For example, smart contracts could

benefit by accessing historic chain MPT data to compute useful

functions such as price volatility or BLS aggregate keys. Instead,

such applications are currently enabled by the use of blockchain

“oracles” that have to be blindly trusted to expose the correct output

to the smart contract.

We introduce Reckle+ Trees, a natural extension of Reckle

Trees that support updatable verifiable computation over Merkle

leaves. With Reckle+ Trees, a prover can commit to a memory M,

and provide a proof of correctness for Map/Reduce computation

on any subset of M. This is technically achieved by encoding, in

the recursive circuit, not only the computation of the canonical

hash and the Merkle hash (as we would do in the case of batch

proofs), but also the logic of the Map and the Reduce functions. The

final Map/Reduce proof can be easily updated whenever the subset

changes, without having to recompute it from scratch.

1.2 Applications

We use Reckle+ Trees to enable (and experimentally evaluate), for

the first time, the following applications in the blockchain space.

Dynamic digest translation. Most blockchains such as Ethereum

employ MPTs that use hash functions such as SHA-256 or Kec-

cak. Unfortunately, these hash functions are particularly SNARK-

unfriendly, meaning that they generate a large number of con-

straints when turned into circuits so that they can be used by

SNARKs. Due to this, it becomes difficult and slow to prove any

meaningful computation (say, to a smart contract that cannot ex-

ecute the computation due to limited computational resources)

over Ethereum MPT data. On the other hand, there are particu-

larly SNARK-friendly hash functions such as Poseidon [11] that

can generate up to 100× less constraints than SHA-256 or Keccak,

leading to tremendous savings in prover time. Reconfiguring the

whole Ethereum blockchain to use Poseidon so that we can pro-

duce faster proofs cannot work, of course—we just need to work

with Keccak. Our main idea is to enable a digest translation service

that can provide proofs equivalence between a Keccak-based digest

and a Poseidon-based digest, i.e., that both digests are computed

over the same set of leaves. These proofs of equivalence should be

easily updatable when new blocks are generated. After we have

an equivalence proof, we can then compute a SNARK proof on

Poseidon-hashed data much faster.

It turns out that Reckle+ Trees can be used for digest translation.

The “Map” computation is applied at the leaves as the identity

function, and the “Reduce” computation is applied at the internal

nodes producing both Keccak and Poseidon hashes of their children

(Note that for this application we use all the leaves as the batch

index set 𝐼 .) As new blocks are produced, and some of the Merkle

leaves change, this equivalence proof can be updated fast, always
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being ready to be consumed by a SNARK working with Poseidon-

hashed data.

Updatable BLS key aggregation. Light clients [9] are used

to check the “local correctness” of a block. That is, given a block

header ℎ and an alleged set of transactions, a light client would

check that these transactions indeed correspond to the specific

header ℎ. However, a light client does not have the security of a full

node, since it does not check the specific block header ℎ is correct,

by going back to genesis. Therefore, the block header that a light

client is checking could in principle be bogus. One way to address

this issue is to have a certain number of (Ethereum) signers, picked

from a fixed set of validators, sign the block header (These signers

can be staked and slashed in case they sign a bogus header, offering

cryptoeconomic security.)

In this scenario, the light clients, instead of just receiving the

headerℎ, theywould receive an aggregate signature 𝑠𝑖𝑔(ℎ) allegedly
signed by a set of at least 𝑡 signers from a Merkle-committed set

of validators with digest 𝑑 . To verify this aggregate signature, a

light client would need an aggregate key apk and a proof for the

following public statement (apk, 𝑡, 𝑑)
“apk is the aggregate BLS public key from ≥ 𝑡 BLS keys derived from

the set of BLS keys committed to by 𝑑 .”

Reckle+ Trees can be used to produce highly parallelizable and

updatable proofs for the statement (apk, 𝑡, 𝑑). Here, the “Map” func-

tion selects the leaf public key and sets its counter to 1 if the specific

leaf participates in the set of signers, and the “Reduce” function

multiplies the aggregate keys of its children, adding their counters

accordingly. Note here that the updatability property of Reckle+

Trees becomes crucial since as new blocks are being produced, the

set of signers (as well as the set of validators) could change, in which

case computing the proof for the public statement (apk′, 𝑡, 𝑑′) could
be much faster than recomputing the proof from scratch—especially

when the delta between the old and new signer/validator sets is

small.

1.3 Evaluation

We implement
∗
and evaluate Reckle trees and Reckle+ trees us-

ing Plonky2 [18]. We find that Reckle trees have small memory

footprint, significantly outperform previous approaches in terms

of updates and verification (Reckle trees updates take 16.61s and

verification is around 18ms) and perform similarly with other ap-

proaches in terms of aggregation time. In terms of applications, we

estimate that Reckle+ trees can speed up digest translation up to

200× (The 200× is a figure that we had to extrapolate, since other

approaches could not execute for large parameters, due to very

large memory requirements.) Finally, Reckle trees’ proof size is 112

KiB, independent of the batch size and the size of the vector. We

also note that while there are few implementations of batch proofs

that we can compare to, there are no implementations of Merkle

computation proofs.

1.4 Related work

We now describe some related approaches could be used to build

batch proofs and Merkle computation proofs.

∗
Our circuits are available at: https://github.com/Lagrange-Labs/reckle-trees

Recursive batch proofs via tree-of-proofs approach. Deng

and Du [8] recently proposed an application of recursive SNARKs

in computing succinct Merkle batch proofs—using a “tree of proofs”

approach: Suppose one wants to compute a Merkle batch proof

𝜋𝐼 for an index set 𝐼 . Their main idea has two steps. In the first

step a SNARK circuit is built for verifying a single Merkle proof.

This SNARK is executed |𝐼 | times, outputting a SNARK proof 𝑝𝑖
for every index 𝑖 ∈ 𝐼 . Then a binary tree is built with all proofs 𝑝𝑖
as leaves. For every node 𝑣 of the binary tree a recursive SNARK

is executed (outputting a proof 𝑝𝑣 ) that verifies the proofs coming

from 𝑣 ’s children. This process continues up to the root and the

batch proof is defined as the final recursive proof 𝑝𝑟 of the root.

Unfortunately, the produced batch proof is not updatable. If an

element of the tree or the batch changes, all proofs at the leaves will

be affected and therefore the whole procedure must be executed

from scratch, requiring computational work that is proportional to

the size of the batch. In addition, in such “tree of proofs” approach,

if two indices share common structure in their Merkle proofs (e.g.,

successive indices), the same hash computations will be repeating

within the two circuits corresponding to those leaves, unnecessarily

consuming computational resources.

Succinct batch proofs via vector-commitment approach. Suc-

cinct batch proofs can be computed using vector commitments [5,

10, 14, 20–23]. Vector commitments are typically algebraic con-

structions as opposed to hash-based Merkle trees. With vector

commitments a batch proof for |𝐼 | elements has size either optimal

𝑂 (1) (e.g., [21]) or logarithmic (e.g., [20]), but always independent

of the batch size |𝐼 |. However, while vector commitments achieve

optimal batch proof sizes, they face other challenges. In particular,

the majority of vector commitments are not updatable: As opposed

to Merkle trees, whenever a single memory slot changes, Ω(𝑛) time

is required to update all individual proofs, which can be a bottleneck

for many applications. While there are some vector commitments

(e.g., [20, 23]) that can update proofs in logarithmic time (while

having succinct batch proofs), those suffer from increased concrete

batch proof sizes, large public parameters and high aggregation and

verification times (At the same time, their batch proofs are not up-

datable.) For example, a Hypeproof [20] batch proof for a thousand

memory slots requires access to gigabytes of data to be generated

and approximately 17 seconds to be verified.

Merkle computation proofs via Merkle-SNARK approach.

Vector commitments can handle only memory content. To enable

arbitrary computation overMerkle leaves one of course can building

a SNARK (e.g., [12]) that verifies Merkle proofs and then performs

computation via a monolithic circuit, but this is typically very ex-

pensive (Such an approach also leaves very little space for massive

parallelism since proof computation can be parallelized only to the

extent that the the prover of underlying SNARK can be parallelized.)

For instance, computing a SNARK-based proof that verifies a thou-

sand memory slots on a Poseidon-based 30-deep Merkle tree can

take up to 20 minutes [20]—and this excludes any computation that

one might wish to perform on the leaves. To make things worse,

any updates to the memory M would require to pay that very cost

again!
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2 PRELIMINARIES

We now provide necessary notation and definitions for SNARKs,

Merkle Trees and vector commitments. We will be extending the

vector commitment definition to account for updatable batch proofs.

Let 𝜆 be the security parameter andH : {0, 1}∗ → {0, 1}2𝜆 denote
a collision-resistant hash function. Let [𝑛] = [0, 𝑛) = {0, 1, . . . , 𝑛 −
1}, and 𝑟 ∈𝑅 𝑆 denote picking an element from 𝑆 uniformly at

random. Bolded, lower-case symbols such as a = [𝑎0, . . . , 𝑎𝑛−1]
typically denote vector of binary strings, where 𝑎𝑖 ∈ {0, 1}2𝜆,∀𝑖 ∈
[𝑛]. If 𝑎𝑖 ’s are arbitrarily long, we use the H function to reduce it

to a fixed size. |a| denotes the size of the vector a.
Succinct Non-Interactive Arguments of Knowledge [12]. Let

R be an efficiently computable binary relation that consists of pairs

of the form (𝑥,𝑤), where 𝑥 is a statement and𝑤 is a witness.

Definition 2.1. A SNARK is a triple of PPT algorithms Π =

(Setup, Prove,Verify) defined as follows:

• Setup(1𝜆,R) → (pk, vk): On input security parameter 𝜆

and the binary relation R, it outputs a common reference

string consisting of the prover key and the verifier key

(pk, vk).
• Prove(pk, 𝑥,𝑤) → 𝜋 : On input pk, a statement 𝑥 and the

witness𝑤 , it outputs a proof 𝜋 .

• Verify(vk, 𝑥, 𝜋) → 1/0: On input vk, a statement 𝑥 , and a

proof 𝜋 , it outputs either 1 indicating accepting the state-

ment or 0 for rejecting it.

It also satisfies the following properties:

• Completeness: For all (𝑥,𝑤) ∈ R, the following holds:

Pr
(
Verify(vk, 𝑥, 𝜋) = 1

���� (pk, vk) ← Setup(1𝜆, R)
𝜋 ← Prove(pk, 𝑥, 𝑤 )

)
= 1 .

• Knowledge Soundness: For any PPT adversary A, there ex-

ists a PPT extractor XA such that the following probability

is negligible in 𝜆:

Pr
(
Verify(vk, 𝑥, 𝜋 ) = 1

∧ R(𝑥, 𝑤 ) = 0

���� (pk, vk) ← Setup(1𝜆, R)
( (𝑥, 𝜋 ) ;𝑤 ) ← A ∥XA ( (pk, vk) )

)
.

(The notation ((𝑥, 𝜋);𝑤) ← A ∥XA ((pk, vk)) means the

following: After the adversary A outputs (𝑥, 𝜋), we can
run the extractor XA on the adversary’s state to output𝑤 .

The intuition is that if the adversary outputs a verifying

proof, then it must know a satisfying witness that can be

extracted by looking into the adversary’s state.)

• Succinctness: For any 𝑥 and𝑤 , the length of the proof 𝜋 is

given by |𝜋 |=poly(𝜆) · polylog( |𝑥 | + |𝑤 |).
Merkle trees. Let M be a memory of 𝑛 = 2

ℓ
slots. A Merkle

tree [15] is an algorithm to compute a succinct, collision-resistant

representation C of M (also called digest) so that one can provide a

small proof for the correctness of any memory slot M[𝑖], while at
the same time being able to update C in logarithmic time whenever

a slot changes. We assume the memory slot values and the output

of the H function have size 2𝜆 bits each. The Merkle tree on an

𝑛-sized memoryM can be constructed as follows: Without loss of

generality, assume 𝑛 is a power of two, and consider a full binary

tree built on top of memoryM. For every node 𝑣 in the Merkle tree

𝑇 , the Merkle hash of 𝑣 , C𝑣 , is computed as follows:

(1) If 𝑣 is a leaf node, then C𝑣 = 𝑖𝑛𝑑𝑒𝑥 (𝑣) | |𝑣𝑎𝑙𝑢𝑒 (𝑣) (For sim-

plicity of notation, we use 𝜆 bits for index and 𝜆 bits for

value.)

(2) If 𝑣 ’s left child is 𝐿 and 𝑣 ’s right child is 𝑅, then C𝑣 =

H(C𝐿 | |C𝑅).
The digest of the Merkle tree is the Merkle hash of the root node.

The proof for a leaf comprises hashes along the path from the leaf to

the root. It can be verified by using hashes in the proof to recompute

the root digest C.

BLS signatures. BLS signatures [4] are signatures that can be

easily aggregated. For BLS signatures we need a bilinear map 𝑒 :

G × G → G𝑇 over elliptic curve groups and a hash function H :

{0, 1}∗ → G. GroupsG andG𝑇 have prime order 𝑝 . The secret key is

𝑠𝑘 ∈ Z𝑝 and the public key is𝑔𝑠𝑘 ∈ G, where𝑔 is the generator ofG.
To sign a message𝑚 ∈ {0, 1}∗ we output the signature H(𝑚)𝑠𝑘 ∈ G.
To verify a signature 𝑠 ∈ G on message𝑚 ∈ {0, 1}∗ given public key

𝑃𝐾 ∈ G, the verifier checks whether 𝑒 (𝑠, 𝑔) = 𝑒 (H(𝑚), 𝑃𝐾). Given
public keys {𝑔𝑠𝑘𝑖 }𝑖=1,...,𝑡 one can compute an aggregate public key∏𝑡
𝑖=1 𝑔

𝑠𝑘𝑖
. To verify a 𝑡-multisignature 𝑆 on a message 𝑚 given

aggregate public key 𝐴𝑃𝐾 the verifier checks whether 𝑒 (𝑆, 𝑔) =
𝑒 (H(𝑚), 𝐴𝑃𝐾). If 𝐴𝑃𝐾 is provably the product of 𝑡 individual BLS

public keys 𝑃𝐾 , we can be assured that 𝑡 parties (in particular the

owners of the respective secret keys) signed the message.

Vector Commitments (VCs). A vector commitment is a set

of algorithms that allow one to commit to a vector of 𝑛 slots so

that later one can open the commitment to values of individual

memory slots. One of the most popular implementations of vector

commitments are Merkle trees [15]. Vector commitments typically

enable more advanced properties than Merkle trees, such as batch

proofs (succinct proofs of multiple values). We formalize VCs below,

similar to Catalano and Fiore [5]. We extend the definition with

batch proofs updatability, to capture the new properties introduced

byReckle Trees.

Definition 2.2 (VC). A VC scheme is a set of ppt algorithms:

• Gen(1𝜆, 𝑛) → pp: Outputs public parameters pp.
• Compp (a) → C: Outputs digest C.
• Openpp (𝑖, a) → 𝜋𝑖 : Outputs proof 𝜋𝑖 .

• OpenAllpp (a) → (𝜋0, . . . , 𝜋𝑛−1): Outputs all proofs 𝜋𝑖 .
• Aggpp ((𝑎𝑖 , 𝜋𝑖 )𝑖∈𝐼 ) → (𝜋𝐼 ,Λ𝐼 ): Outputs a batch proof 𝜋𝐼

and a batch-proof data structure Λ𝐼 .
• Verpp (C, (𝑎𝑖 )𝑖∈𝐼 , 𝜋𝐼 ) → {0, 1}: Verifies batch proof𝜋𝐼 against

C.
• UpdDigpp (𝑢, 𝛿,C, aux) → C′: Updates digest C to C′ to re-

flect position 𝑢 changing by 𝛿 given auxiliary input aux.
• UpdProofpp (𝑢, 𝛿, 𝜋𝑖 , aux) → 𝜋 ′

𝑖
: Updates proof 𝜋𝑖 to 𝜋

′
𝑖
to

reflect position 𝑢 changing by 𝛿 given auxiliary input aux.
• UpdBatchProofpp (𝑢, 𝛿, 𝜋𝐼 ,Λ𝐼 , aux) → (𝜋 ′𝐼 ,Λ

′
𝐼
): Updates batch

proof 𝜋𝐼 to 𝜋
′
𝐼
and the batch-proof data structure Λ𝐼 to Λ′

𝐼
to reflect position 𝑢 changing by 𝛿 given auxiliary input

aux.
• UpdAllProofspp (𝑢, 𝛿, 𝜋0, . . . , 𝜋𝑛−1) → (𝜋 ′0, . . . , 𝜋

′
𝑛−1): Updates

all proofs 𝜋𝑖 to 𝜋
′
𝑖
to reflect position 𝑢 changing by 𝛿 .
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WedefineVC correctness and soundness inDefinitions 2.3 and 2.4,

respectively.

Definition 2.3 (VC Correctness). A VC scheme is correct, if for

all 𝜆 ∈ N and 𝑛 = poly(𝜆), for all pp← Gen(1𝜆, 𝑛), for all vectors
a = [𝑎0, . . . , 𝑎𝑛−1], if C = Compp (a), 𝜋𝑖 = Openpp (𝑖, a),∀𝑖 ∈ [0, 𝑛)
(or fromOpenAllpp (a)), and 𝜋𝐼 = Aggpp ((𝑎𝑖 , 𝜋𝑖 )𝑖∈𝐼 ),∀𝐼 ⊆ [𝑛] then,
for any polynomial number of updates (𝑢, 𝛿) resulting in a new

vector a′, if C′ is the updated digest obtained via calls to UpdDigpp,
𝜋 ′
𝑖
proofs obtained via calls to UpdProofpp or UpdAllProofspp for

all 𝑖 , and 𝜋 ′
𝐼
are proofs obtained via calls to UpdBatchProofpp for

all subsets 𝐼 then:

(1) Pr[1← Verpp (C′, {𝑖}, 𝑎′𝑖 , 𝜋
′
𝑖
)] = 1,∀𝑖 ∈ [𝑛].

(2) Pr[1← Verpp (C′, 𝐼 , (𝑎′𝑖 )𝑖∈𝐼 , 𝜋
′
𝐼
)] = 1, ∀𝐼 ⊆ [𝑛].

At a high-level, correctness ensures that proofs created viaOpen
or OpenAll verify successfully via Ver, even in the presence of

updates and aggregated proofs.

Definition 2.4 (VC Soundness). ∀ ppt adversaries A,

Pr


pp← Gen(1𝜆, 𝑛),

(C, {𝑎𝑖 }𝑖∈𝐼 , {𝑎′𝑗 } 𝑗∈ 𝐽 , 𝜋𝐼 , 𝜋 𝐽 ) ← A(1𝜆, pp) :
1← Verpp (C, {𝑎𝑖 }𝑖∈𝐼 , 𝜋𝐼 ) ∧
1← Verpp (C, {𝑎′𝑗 } 𝑗∈ 𝐽 , 𝜋 𝐽 ) ∧
∃𝑘 ∈ 𝐼 ∩ 𝐽 s.t. 𝑎𝑘 ≠ 𝑎′

𝑘


≤ negl(𝜆) .

At a high level, soundness ensures that no adversary can output

two inconsistent proofs for different values 𝑎𝑘 ≠ 𝑎′
𝑘
at position 𝑘

with respect to an adversarially-produced C.

3 RECKLE TREES

In this section, we present Reckle Trees, a vector commitment

scheme which extends Merkle trees to provide updatable batch

proofs. Recall that we assume, 𝑛 = 2
ℓ
, where ℓ is the height of the

tree. Computing the commitment C of vector a = [𝑎0, . . . , 𝑎𝑛−1]
in Reckle Trees is straightforward: Just compute the Merkle tree

digest of a as we described in Section 2 (For our basic implementa-

tion we use the Poseidon [11] hash function.) Similarly, the proof

of opening for an index 𝑖 in the vector is the Merkle membership

proof of leaf 𝑎𝑖 . Reckle Trees have a new algorithm to aggregate

Merkle proofs and compute a batch proof, using recursive SNARKs.

Like we previously said, our algorithm outputs batch proofs that

can be updated in logarithmic time.

We now present the algorithm to aggregate proofs. An important

component of our algorithm is the notion of canonical hashing

Section 3.1.

3.1 Canonical hashing

Canonical hashing is a deterministic algorithm to compute a digest

of subset 𝐼 of𝑘 leaves from a set of 2
ℓ
leaves.We define the canonical

hash of a node 𝑣 of Merkle tree𝑇 with respect to a subset 𝐼 , denoted

𝑑 (𝑣, 𝐼 ), recursively as:

(1) If 𝑣 is a leaf node we distinguish two cases: If 𝑣 ’s index

is in 𝐼 , then 𝑑 (𝑣, 𝐼 ) := 𝑖𝑛𝑑𝑒𝑥 (𝑣) | |𝑣𝑎𝑙𝑢𝑒 (𝑣) = C𝑣 , otherwise
𝑑 (𝑣, 𝐼 ) := 0.

(2) If 𝑣 has left child 𝐿 and right child 𝑅, then

𝑑 (𝑣, 𝐼 ) := H(𝑑 (𝐿, 𝐼 ) | |𝑑 (𝑅, 𝐼 )) ,

if 𝑑 (𝐿, 𝐼 ) · 𝑑 (𝑅, 𝐼 ) ≠ 0, otherwise 𝑑 (𝑣, 𝐼 ) := 𝑑 (𝐿, 𝐼 ) + 𝑑 (𝑅, 𝐼 ).
Thus, the canonical digest of subset 𝐼 (denoted as 𝑑𝐼 or, simply,

𝑑) is the canonical hash of the root node of 𝑇 for the subset 𝐼 . Note

that when the subset 𝐼 is unambiguous from the context, we denote

𝑑 (𝑣, 𝐼 ) as 𝑑𝑣 .
In Fig. 1, we show a Merkle tree of 16 leaves. At every node we

show with blue the canonical hash of that node with respect to the

subset {2, 4, 5, 15}. For the nodes with no blue hash, their canonical

hash is 0.

3.2 Recursive circuit

A batch proof is a single short proof that simultaneously proves that

a specific subset 𝐼 of elements belongs in the vector. In our scheme,

we implement the batch proof using recursion. In particular, our

precise circuit verifies, recursively, that the following NP statement

(𝐶,𝑑) is true:
“𝑑 is the root canonical digest with respect to some set of leaves of

some Merkle tree whose root Merkle digest is C.”

Note that if we have a proof for the statement above, then we

can easily prove that a specific subset of elements {𝑎𝑖 }𝑖∈𝐼 belongs
to the Merkle tree by just locally recomputing the root canonical

digest. In Fig. 2 we present the recursive circuit B for the statement

above. We indicate precisely what the public input of the circuit is

and what the (private) witness is. Note that because the circuit is

recursive (calling itself), the public inputmust contain a verification

key that will be used by the verification call inside the circuit,

otherwise, the prover could potentially use an arbitrary verification

key (The verification key cannot be hardcoded either since it leads

to circularity issues.)

We note that circuit B works for arbitrary Merkle trees, both

balanced and unbalanced.

3.3 Batch proof

We now show how to aggregate individual Merkle proofs 𝜋𝑖 for an

arbitrary set of indices 𝑖 ∈ 𝐼 so that to compute the batch proof. The

first thing that the prover needs to do is to compute the witnesses

that are required to run the SNARK proof. To do that, the prover

performs the following.

(1) The prover computes the tree 𝑇𝐼 formed by proofs {𝜋𝑖 }𝑖∈𝐼 .
For each node 𝑣 of 𝑇𝐼 we store the respective value C𝑣 that
that can be found in or computed from the proofs {𝜋𝑖 }𝑖∈𝐼 .
For example, in Fig. 1, where 𝐼 = {2, 4, 5, 15}, the nodes of
tree 𝑇𝐼 are drawn as rectangles.

(2) Let now 𝑇 ′
𝐼
⊂ 𝑇𝐼 be the subtree of 𝑇𝐼 that contains just the

nodes on the paths from 𝐼 to the root. The prover computes

the canonical hash 𝑑 (𝑣, 𝐼 ) for all nodes 𝑣 ∈ 𝑇 ′
𝐼
with respect

to 𝐼 . By the definition of the canonical hash, all nodes not

included𝑇 ′
𝐼
will have canonical hash equal to 0. For example,

in Fig. 1 we indicate the canonical hash with blue. All nodes

without a blue hash have canonical hash equal to 0.

After we have computed the witness, we proceed with comput-

ing the recursive SNARK proofs that eventually will output the

batch proof. We first produce the public parameters by running the

setup of the SNARK (pkB , vkB) ← Setup(1𝜆,B) for the circuit B.
Consider now the set of indices 𝐼 for which we are calculating the
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𝜋

C = H(C𝐿 | |C𝑅 )
H(H(H(𝑎2 ) | |H(𝑎4 | |𝑎5 ) ) | |H(𝑎15 ) )

𝜋𝐿
C𝐿 = H(C𝐿𝐿 | |C𝐿𝑅 )

H(H(𝑎2 ) | |H(𝑎4 | |𝑎5 ) )

𝜋𝐿𝐿
C𝐿𝐿 = H(C𝐿𝐿𝐿 | |C𝐿𝐿𝑅 )

H(𝑎2 )

C𝐿𝐿𝐿 = H(𝑎0 | |𝑎1 )

𝑎0 𝑎1

𝜋𝐿𝐿𝑅
C𝐿𝐿𝑅 = H(𝑎2 | |𝑎3 )

H(𝑎2 )

𝑎2 𝑎3

𝜋𝐿𝑅
C𝐿𝑅 = H(C𝐿𝑅𝐿 | |C𝐿𝑅𝑅 )

H(𝑎4 | |𝑎5 )

𝜋𝐿𝑅𝐿
C𝐿𝑅𝐿 = H(𝑎4 | |𝑎5 )

H(𝑎4 | |𝑎5 )

𝑎4 𝑎5

C𝐿𝑅𝑅 = H(𝑎6 | |𝑎7 )

𝑎6 𝑎7

𝜋𝑅
C𝑅 = H(C𝑅𝐿 | |C𝑅𝑅 )

H(𝑎15 )

𝜋𝑅𝐿
C𝑅𝐿 = H(C𝑅𝐿𝐿 | |C𝑅𝐿𝑅 )

C𝑅𝐿𝐿 = H(𝑎8 | |𝑎9 )

𝑎8 𝑎9

𝜋𝑅𝐿𝑅
C𝑅𝐿𝑅 = H(𝑎10 | |𝑎11 )

𝑎10 𝑎11

𝜋𝑅𝑅
C𝑅𝑅 = H(C𝑅𝑅𝐿 | |C𝑅𝑅𝑅 )

H(𝑎15 )

𝜋𝑅𝑅𝐿
C𝑅𝑅𝐿 = H(𝑎12 | |𝑎13 )

𝑎12 𝑎13

𝜋𝑅𝑅𝑅
C𝑅𝑅𝑅 = H(𝑎14 | |𝑎15 )

H(𝑎15 )

𝑎14 𝑎15

Level

4

3

2

1

0

Figure 1: Batch proof data structure. Consider a vector of size 8 and subset 𝐼 = {2, 4, 5, 15}. Recall that every leaf stores both index

and value. Every node 𝑣 in the path from root to leaves of 𝐼 , stores the Merkle hash, canonical hash with respect to 𝐼 , and the

recursive SNARK proof, and every sibling of 𝑣 stores just the Merkle hash.

Circuit B
Public input: (vk,C, 𝑑)
Witness: (C𝐿, 𝑑𝐿, 𝜋𝐿) and (C𝑅, 𝑑𝑅, 𝜋𝑅)
Computation:

(1) Check C = H(C𝐿 | |C𝑅);
(2) If 𝑑𝑅 ·𝑑𝐿 ≠ 0 check 𝑑 = H(𝑑𝐿 | |𝑑𝑅) else check 𝑑 = 𝑑𝐿 +𝑑𝑅 ;
(3) If 𝑑𝐿 ≠ 0 check Verify(vk, (vk,C𝐿, 𝑑𝐿), 𝜋𝐿) or C𝐿 = 𝑑𝐿 ;

(4) If 𝑑𝑅 ≠ 0 check Verify(vk, (vk,C𝑅, 𝑑𝑅), 𝜋𝑅) or C𝑅 = 𝑑𝑅 ;

(5) Return true;

Figure 2: Batch proof recursive circuit for Reckle Trees.

batch proof and let 𝑇 ′
𝐼
be the subtree as defined above. Let 𝑉𝑙 be

the nodes of𝑇 ′
𝐼
at level 𝑙 = 1, . . . , ℓ . To compute the batch proof, we

follow the procedure below.

for all levels 𝑙 = 1, . . . , ℓ , for all nodes 𝑣 ∈ 𝑉𝑙
• Let 𝐿 be 𝑣 ’s left child and 𝑅 be 𝑣 ’s right child in 𝑇𝐼 ;

• Set 𝜋𝑣 to be the output of

Prove(pkB , (C𝑣, 𝑑𝑣, vkB), ((C𝐿, 𝑑𝐿, 𝜋𝐿), (C𝑅, 𝑑𝑅, 𝜋𝑅)) (1)

The final batch proof for index set 𝐼 will be 𝜋𝑟 , where 𝑟 is the root

of 𝑇𝐼 . Note that 𝜋𝑟 proves the statement (C, 𝑑 (𝑟, 𝐼 )) is true, where
(C, 𝑑 (𝑟, 𝐼 )) is defined in Section 3.2.

Computing the batch proof has parallel complexity ℓ , indepen-

dent of |𝐼 |. This is because we perform the canonical hashing com-

putation inside the Merkle verification.

How to ensure Merkle leaves are used as witness. We note

here that the circuit in Figure 2 does not necessarily consider the

leaves of the Merkle tree. For example, given a Merkle tree of 10

levels, we can compute a valid batch proof using the circuit in

Figure 2 even if we discard some of the levels of the tree and just

using only, say, the first three levels. Note that this is not an attack

since what we prove is consistent with the public statement we

put forth. If we wish our proof to always consider the leaves of the

tree we need to assume there is a function leaf () that distinguishes
between aMerkle leaf and aMerkle hash. For example, this function

might be checking whether the node in question has a particular

format, e.g., a bit indicating whether it is a leaf or not (For instance,

in Ethereum MPTs, leaves always have a particular format.) In

presence of the leaf () function we can always force our prover to

consider leaves by changing lines (3) and (4) in Figure 2 as follows.

If 𝑑𝐿 ≠ 0 check Verify(vk, (vk,C𝐿, 𝑑𝐿), 𝜋𝐿) ∨ C𝐿 = 𝑑𝐿 ∧ leaf (C𝐿);
and

If 𝑑𝑅 ≠ 0 check Verify(vk, (vk,C𝑅, 𝑑𝑅), 𝜋𝑅) ∨ C𝑅 = 𝑑𝑅 ∧ leaf (C𝑅);
Note that ensuring the leaves are used as witness will be needed in

our applications section, to compute some function on the leaves

and prove the result of this computation (See Section 4.1.)

3.4 Updating the batch proof

In order to update a batch proof (of a subset 𝐼 ), when some leaves are

changing, we use the batch data structure. The batch data structure

for a subset 𝐼 , Λ𝐼 , consists of all the Merkle hash values, canonical

hash values, and recursive SNARK proofs (as computed before)

along the nodes (and their siblings) from the leaf nodes in 𝐼 to the

root, as depicted in Fig. 1). It is now natural to maintain a dynamic

batch proof as follows: Whenever a leaf value 𝑎 𝑗 changes to 𝑎
′
𝑗
, we

distinguish two cases:

(1) If the leaf’s index 𝑗 belongs to 𝐼 , then all canonical hashes,

Merkle hashes and SNARK proofs of all nodes from leaf 𝑗

to the root must be updated;

(2) If the leaf’s index 𝑗 does not belong to 𝐼 , then at least one

Merkle hash of a node 𝑣 ′ of the batch data structure will

change that will cause other Merkle hashes and related

SNARK proofs to change, along the path from 𝑣 ′ to the root.

A similar approach can be used when we are changing the size of

the batch, either by adding or removing elements. In both cases,

all updates can be performed in 𝑂 (log𝑛) time since the height

of the batch data structure is log𝑛. Note that the update time is

independent of |𝐼 |, as opposed to previous approaches where the
6



Gen(1𝜆, 𝑛) → pp: Let pp contain the following:

• The size of the vector 𝑛.

• A collision-resistant hash function H.
• (pk, vk) ← Setup(1𝜆,B), where B is the circuit in Fig. 2.

Compp (a) → C: Return the Merkle root.

Openpp (𝑖, a) → 𝜋𝑖 : Return the Merkle proof for element 𝑎𝑖 .

OpenAllpp (a) → (𝜋0, . . . , 𝜋𝑛−1): Return the Merkle tree.

Aggpp ((𝑎𝑖 , 𝜋𝑖 )𝑖∈𝐼 ) → (𝜋𝐼 ,Λ𝐼 ):

• Using {𝜋𝑖 }𝑖∈𝐼 and 𝐼 , compute the Merkle hash C𝑣 and the

canonical digest 𝑑 (𝑣, 𝐼 ) for every node in 𝑣 ∈ 𝑇𝐼 , where 𝑇𝐼
is defined in Section 3.3.

• Let 𝑇 ′
𝐼
be the subtree of 𝑇𝐼 as defined in Section 3.3.

• For all nodes 𝑣 in 𝑇 ′
𝐼
compute 𝜋𝑣 as in Eq. (1).

• Return 𝜋𝐼 as 𝜋𝑟 where 𝑟 is the root of 𝑇𝐼 and Λ𝐼 as 𝑇𝐼 along
with the values

{(C𝑣, 𝑑 (𝑣, 𝐼 ), 𝜋𝑣)}𝑣∈𝑇𝐼 .

Verpp (C, (𝑎𝑖 )𝑖∈𝐼 , 𝜋𝐼 ) → {0, 1}:
• Using (𝑎𝑖 )𝑖∈𝐼 , compute 𝑑𝐼 as in Section 3.1.

• Return Verify(vkB , (vkB ,C, 𝑑𝐼 ), 𝜋𝐼 ).

UpdDigpp (𝑢, 𝛿,C, aux) → C′:

• Parse aux as 𝜋𝑢 .
• Return the Merkle root after updating to 𝑎𝑢 + 𝛿 .

UpdProofpp (𝑢, 𝛿, 𝜋𝑖 , aux) → 𝜋 ′
𝑖
:

• Parse aux as 𝜋𝑢 .
• Recompute the Merkle path after updating to 𝑎𝑢 + 𝛿 .
• Update affected portions of 𝜋𝑖 .

UpdBatchProofpp (𝑢, 𝛿, 𝜋𝐼 ,Λ𝐼 , aux) → (𝜋 ′𝐼 ,Λ
′
𝐼
):

• Parse aux as 𝜋𝑢 .
• Recompute the Merkle path after updating to 𝑎𝑢 + 𝛿 .
• For every node 𝑣 in Λ𝐼 affected by update do the following.

– Update the Merkle hash value.

– Recompute the canonical hash 𝑑 (𝑣, 𝐼 ) if necessary.
– Recompute the SNARK proof 𝜋𝑣 as in Eq. (1).

– Return the updated 𝜋𝐼 and Λ𝐼 .

UpdAllProofspp (𝑢, 𝛿, 𝜋0, . . . , 𝜋𝑛−1) → (𝜋 ′0, . . . , 𝜋
′
𝑛−1):

• Parse aux as 𝜋𝑢 .
• Recompute the Merkle path after updating to 𝑎𝑢 + 𝛿 .

Figure 3: Algorithms for Reckle Trees. We use a collision-

resistant hash function H and a SNARK (Setup, Prove,Verify)
from Definition 2.1 as black boxes.

update requires work proportional to |𝐼 |. In Fig. 3 we present the

detailed implementation of theReckle Trees algorithms.

3.5 Security proof

In this section we prove that theReckle Trees VC scheme, whose

detailed implementation is described in Fig. 3 satisfies soundness

according to Definition 2.4. Correctness, per Definition 2.3, follows

easily by inspection.

Theorem 3.1 (Soundness of Reckle Trees). Reckle Trees

from Fig. 3 are sound per Definition 2.4 assuming collision resistance

of the hash function H and knowledge soundness of the underlying

SNARK (Setup, Prove,Verify).

Proof. Deferred to Appendix A.

□

3.6 Optimized Reckle Trees circuit

While the circuit of Fig. 2 is simple, there are two issues that could

create significant overhead during implementation.

(1) Recall that the circuit in Fig. 2 takes as input SNARK proofs

𝜋𝑅 and 𝜋𝐿 that need to be verified. When using a SNARK

whose proof size depends on the size of computation (such

as in Plonky2 [18] that we use in our implementation), the

circuit size changes during each recursive call. One could

address this issue by having an upper bound on the input

of the circuit, but this could create additional overhead.

(2) For a tree of 𝑛 leaves, the circuit in Fig. 2 needs to be called

𝑛 − 1 times, equal to the number of internal nodes, leading

to 𝑛 − 1 recursive calls. However note that there is no need

to recurse on the leaf nodes—this is the base case of the

recursion. Given recursion is the most expensive operation,

we would like to reduce the number of recursive calls.

Our approach to address both problems above is to consider log𝑛

different circuits, one per each lever of the tree. Then the size of

the circuit is fixed at each level and we can ensure the leaf circuit is

quite simple and does not contain any recursive calls (The number

of recursive calls will be 𝑛/2−1.) We show the new circuits in Fig. 4.

Note that the circuit B𝑖 always hardcodes the key vk𝑖−1 of circuit
B𝑖−1. The new circuit is shown in Fig. 4.

3.7 Reducing recursive calls with bucketing

Let 𝑟 be the concrete cost of recursion and ℎ be the concrete cost

of hashing. The approximate concrete parallel complexity (both

aggregation and update) of Reckle Trees is

𝑓 = (ℓ − 1) · 2𝑟 + ℓ · 2ℎ

since at every level of the tree we require two recursive calls and

two hashes, except for the last level where we just do two hashes

(For this simplistic analysis we do not account for conditionals.)

In our implementation we have noticed that the overhead of

recursion is the dominant cost in our circuits, in terms of number

of constraints in Plonky2 [18].

To reduce the number of recursive call as much as possible, we

bucket 𝑝 = 2
𝑞
leaves together into a monolithic circuit. In this way

we have the following concrete parallel complexity

𝑔 = (ℓ − 𝑞) · (2𝑟 + 2ℎ) + (2𝑞 − 1) · 2ℎ .

This is because for the last 𝑞 levels of the tree, the bucketing ap-

proach will have to compute more hashes (2
𝑞 − 1, as opposed to 𝑞)

since we are using a monolithic circuit.

We want to find the 𝑞 such that the difference between these

parallel complexities be maximum, i.e., we want to maximize the
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Circuit B0
Public input: (C, 𝑑)
Witness: (C𝐿, 𝑑𝐿) and (C𝑅, 𝑑𝑅)
Computation:

(1) Check C = H(C𝐿 | |C𝑅);
(2) If 𝑑𝑅 ·𝑑𝐿 ≠ 0 check 𝑑 = H(𝑑𝐿 | |𝑑𝑅) else check 𝑑 = 𝑑𝐿 +𝑑𝑅 ;
(3) If 𝑑𝐿 ≠ 0 check 𝑑𝐿 = C𝐿 ;
(4) If 𝑑𝑅 ≠ 0 check 𝑑𝑅 = C𝑅 ;
(5) Return true;

Circuit B𝑖 (𝑖 = 1, . . . , ℓ − 1)
Public input: (C, 𝑑)
Witness: (C𝐿, 𝑑𝐿, 𝜋𝐿), (C𝑅, 𝑑𝑅, 𝜋𝑅)
Computation:

(1) Check C = H(C𝐿 | |C𝑅);
(2) If 𝑑𝑅 ·𝑑𝐿 ≠ 0 check 𝑑 = H(𝑑𝐿 | |𝑑𝑅) else check 𝑑 = 𝑑𝐿 +𝑑𝑅 ;
(3) If 𝑑𝐿 ≠ 0 check Verify(vk𝑖−1, (C𝐿, 𝑑𝐿), 𝜋𝐿);
(4) If 𝑑𝑅 ≠ 0 check Verify(vk𝑖−1, (C𝑅, 𝑑𝑅), 𝜋𝑅);
(5) Return true;

Figure 4: Optimized batch proof circuits for Reckle Trees.

Circuit Q𝑘 (𝑘 = 0, . . . , 𝑞)

Public input: C, 𝑑,V
Witness 1: (C1, 𝑑1), . . . , (C𝑞, 𝑑𝑞)
Witness 2: (C𝑥1 , 𝑑𝑥1 ), . . . , (C𝑥𝑘 , 𝑑𝑥𝑘 )
Witness 3: (vk𝑥1 , 𝜋𝑥1 ), . . . , (vk𝑥𝑘 , 𝜋𝑥𝑘 )

Computation:

(1) Check vk𝑥1 , . . . , vk𝑥𝑘 are inV;

(2) Check

(C𝑥1 , 𝑑𝑥1 ), . . . , (C𝑥𝑘 , 𝑑𝑥𝑘 )
have all non-zero 𝑑𝑖 ’s and that all are a subset of

(C1, 𝑑1), . . . , (C𝑞, 𝑑𝑞) ;
(3) Check C = H(𝐶1 | |𝐶2 | | . . . | |𝐶𝑞);
(4) Check 𝑑 = H(𝑑𝑥1 | |𝑑𝑥2 | | . . . | |𝑑𝑥𝑘 );
(5) Check Verify(vk1, (C𝑥1 , 𝑑𝑥1 ), 𝜋𝑥1 ) or C𝑥1 = 𝑑𝑥1 ;
(6) . . .

(7) Check Verify(vk𝑥𝑘 , (C𝑥𝑘 , 𝑑𝑥𝑘 ), 𝜋𝑘 ) or C𝑥𝑘 = 𝑑𝑥𝑘 ;

(8) Return true;

Figure 5: Circuit for batch proof in 𝑞-ary tree Reckle tree.

Note that the circuit is parameterized for 𝑘 = 0, . . . , 𝑞.

function |𝑓 − 𝑔| with respect to 𝑞. For an implementation, where

𝑟 = 450 ms and ℎ = 15 ms we have found that the optimal 𝑞 = 5.48

(for ℓ = 27).

3.8 𝑞-ary Reckle Trees

We can extend Reckle Trees to 𝑞-ary trees. 𝑞-ary Reckle trees

model batch proof computation for MPT trees (Merkle Patricia

Tries) that are used in Ethereum and other blochchain projects.

Every node in a 𝑞-ary tree has degree at most 𝑞 (In Ethereum MPT,

𝑞 = 16.) As with Merkle trees, we define the Merkle hash C𝑣 of a
node in a 𝑞-ary tree as

H(C1 | | . . . | |C𝑞) ,
where C𝑖 is the Merkle hash of its 𝑖-th child. If some child is missing

(and therefore the degree is less than 𝑞), we set the Merkle hash of

this child to be 𝑛𝑢𝑙𝑙 (We can also define the Merkle hash of a node to

be the hash of the sorted list that contains the hashes of only those

children that are present, but we avoid this in sake of simplicity.)

The canonical hash 𝑑𝑣 of a node 𝑣 with respect to a subset of leaves

𝐼 is naturally defined as the hash of the the sorted list of children

that are ancestors of 𝐼 . The circuit Q𝑘 is given in Fig. 5.

Note that Q𝑘 is parameterized by 𝑘 = 0, . . . , 𝑞, leading to a total

of 𝑞 + 1 circuits. We do that to represent a node with 0, 1, . . . , 𝑞

active children, with respect to the batch 𝐼 . This allows to avoid

executing 𝑞 recursive calls even when there are fewer than 𝑞 active

children. Note also that the circuit takes also as input the set of

all verification keyV = {vk0, . . . , vk𝑞} to ensure that that prover
always uses as verification key in the recursive call a key from a

correct, predefined set of keys (We can implement that efficiently by

providing a Merkle digest 𝑑 (V) as public input along with Merkle

proofs for the verification keys.)

In Q𝑘 , Witness 1 contains the Merkle hashes and canonical

hashes of 𝑣 ’s children, Witness 2 is the alleged subset of Witness

1 consisting of active nodes with respect to the batch, andWitness

3 contains the SNARK proofs and verification keys that will used

in the recursive calls. By applying circuit Q𝑘 from the leaves of the

batch 𝐼 to the root, deciding which 𝑘 to use based on the number

of active children that the specific node has, we can prove the

following statement.

“𝑑 is the root canonical digest with respect to some set of leaves of

some 𝑞-ary Merkle tree whose root Merkle digest is C.”

Recall that as with circuit in Fig. 2, circuit Q𝑘 takes as input

SNARK proofs that need to be verified. Since our underlying SNARK

is Plonky2 [18], these proofs will have different sizes. As we said,

one could address this issue either by having an upper bound on

the input or, in the case where the 𝑞-ary tree has a fixed shape (e.g.,

a full 𝑞-ary tree) by hardcoding the respective verification keys, as

we did in Fig. 4 for the full binary tree. We leave the implementation

of circuits for 𝑞-ary trees as future work.

4 RECKLE+ TREES FOR VERIFIABLE

MAP/REDUCE

In this section we present Reckle+ Trees, an extension of Reckle

Trees can be use to prove the correctness of Map/Reduce-style [7]

computations on data committed to by a Merkle tree. Reckle+

Trees provide Map/Reduce proofs that are easily updatable and

can be computed in parallel. LetD and R denote the domain of the

input and output of the computation, respectively. We consider the

following abstraction for Map/Reduce:

• Map : D → R
• Reduce : R × R → R

We remark that the Reduce operation can also take just a single

input. Assume we want to execute the Map/Reduce computation

on a subset 𝐼 ⊆ [𝑛] of the memory slots which have 𝑑 as their
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CircuitM
Public input: (vk,C, 𝑑, out)
Witness: (C𝐿, 𝑑𝐿, 𝜋𝐿, out𝐿) and (C𝑅, 𝑑𝑅, 𝜋𝑅, out𝑅)
Computation:

(1) Check C = H(C𝐿 | |C𝑅);
(2) If 𝑑𝑅 · 𝑑𝐿 ≠ 0 check (𝑑 = H(𝑑𝐿 | |𝑑𝑅) and out =

Reduce(out𝐿, out𝑅)) else check (𝑑 = 𝑑𝐿 + 𝑑𝑅 and out =
out𝐿 + out𝑅 );

(3) If 𝑑𝐿 ≠ 0 check Verify(vk, (vk,C𝐿, 𝑑𝐿), 𝜋𝐿) or (C𝐿 = 𝑑𝐿
and out𝐿 = Map(C𝐿));

(4) If 𝑑𝑅 ≠ 0 check Verify(vk, (vk,C𝑅, 𝑑𝑅), 𝜋𝑅) or (C𝑅 = 𝑑𝑅
and out𝑅 = Map(C𝑅));

(5) Return true;

Figure 6: Map/Reduce circuit for Reckle+ Trees.

Circuit D0

Public input: (C𝐾 ,C𝑃 )
Witness: (C𝐾𝐿,C𝑃𝐿), (C𝑃𝑅,C𝐾𝑅)
Computation:

(1) Check C𝐾 = H𝐾 (C𝐾𝐿 | |C𝐾𝑅);
(2) Check C𝑃 = H𝑃 (C𝑃𝐿 | |C𝑃𝑅);
(3) Return true;

Circuit D𝑖 (𝑖 = 1, . . . , ℓ − 1)
Public input: (C𝐾 ,C𝑃 )
Witness: (C𝐾𝐿,C𝑃𝐿, 𝜋𝐿), (C𝑃𝑅,C𝐾𝑅, 𝜋𝑅)
Computation:

(1) Check C𝐾 = H𝐾 (C𝐾𝐿 | |C𝐾𝑅);
(2) Check C𝑃 = H𝑃 (C𝑃𝐿 | |C𝑃𝑅);
(3) Check Verify(vk𝑖 , (C𝐾𝐿,C𝑃𝐿), 𝜋𝐿);
(4) Check Verify(vk𝑖 , (C𝐾𝑅,C𝐾𝐿), 𝜋𝐿);
(5) Return true;

Figure 7: Optimized digest translation circuit.

canonical digest. We present the recursive algorithm that checks

the validity of the following NP statement:

“out is the output of the Map/Reduce computation on some set of

leaves which (i) have 𝑑 as their root canonical digest; (ii) belong to

some Merkle tree whose Merkle root is C.”

In Fig. 6, we present the circuitM that verifies the correctness

of the Map/Reduce computation. In the following, we present two

applications of Reckle+ Trees.We do not give the optimized circuit

for simplicity, it can easily be transformed into log𝑛 circuits in the

same way that B (Fig. 2) was transformed into B0 and B𝑖 (Fig. 4).

4.1 Applications

Reckle+ Trees can enable powerful applications by allowing us

to prove the correctness of Map/Reduce computation over large

amounts of dynamic on-chain state data. Reckle Trees are gener-

alizable to the Merkle-Patricia Tries used by popular blockchains,

such as Ethereum, to store smart contract states. We now describe

Circuit A0

Public input: (C, apk, 𝑐𝑛𝑡)
Witness: (C𝐿, apk𝐿, 𝑐𝑛𝑡𝐿), (C𝑅, apk𝑅, 𝑐𝑛𝑡𝑅)
Computation:

(1) Check C = H(C𝐿 | |C𝑅);
(2) Check apk = apk𝐿 · apk𝑅 ;
(3) Check 𝑐𝑛𝑡 = 𝑐𝑛𝑡𝐿 + 𝑐𝑛𝑡𝑅 ;
(4) If apk𝐿 ≠ 1G check C𝐿 = apk𝐿 and 𝑐𝑛𝑡𝐿 = 1 else check

𝑐𝑛𝑡𝐿 = 0;

(5) If apk𝑅 ≠ 1G check C𝑅 = apk𝑅 and 𝑐𝑛𝑡𝑅 = 1 else check

𝑐𝑛𝑡𝑅 = 0;

(6) Return true;

Circuit A𝑖 (𝑖 = 1 . . . , ℓ − 1)
Public input: (C, apk, 𝑐𝑛𝑡)
Witness: (C𝐿, apk𝐿, 𝑐𝑛𝑡𝐿, 𝜋𝐿), (C𝑅, apk𝑅, 𝑐𝑛𝑡𝑅, 𝜋𝑅)
Computation:

(1) Check C = H(C𝐿 | |C𝑅);
(2) Check apk = apk𝐿 · apk𝑅 ;
(3) Check 𝑐𝑛𝑡 = 𝑐𝑛𝑡𝐿 + 𝑐𝑛𝑡𝑅 ;
(4) If apk𝐿 ≠ 1G check Verify(vk𝑖 , (C𝐿, apk𝐿, 𝑐𝑛𝑡𝐿), 𝜋𝐿) else

check 𝑐𝑛𝑡𝐿 = 0;

(5) If apk𝑅 ≠ 1G check Verify(vk𝑖 , (C𝑅, apk𝑅, 𝑐𝑛𝑡𝑅), 𝜋𝑅) else
check 𝑐𝑛𝑡𝑅 = 0;

(6) Return true;

Figure 8: Optimized BLS aggregation circuit.

in detail two such applications, digest translation and BLS key

aggregation, which we later fully evaluate in Section 5.

Dynamic digest translation. As we mentioned in the intro-

duction, in digest translation we wish to compute a cryptographic

proof for the following public statement (C𝐾 ,C𝑃 ).
“(C𝐾 ,C𝑃 ) is the pair of Keccak/Poseidon Merkle digests on some

same set of leaves.”

This is useful since it allows us to extensively work with SNARK-

friendly hashes (such as Poseidon) to compute SNARK proofs, while

still being able to verify such Poseidon-based proofs (over dynamic

data) against legacy SNARK-unfriendly hashes, such as SHA-256

or Keccak. All we have to do is to attach the proof of equivalence

(C𝐾 ,C𝑃 ) for the statement above.

In particular, since digest translation is an application of our gen-

eral Map/Reduce framework, we can instantiate the Map/Reduce

functions as follows:

• Map: It is the identity function. It takes as input a leaf and

outputs the same leaf.

• Reduce: Takes as input two children and outputs the Posei-

don hash of these children (We assume the initial Merkle

tree is built with the Keccak digest.)

Note that while we describe digest translation for Keccak and Po-

seidon, we have the flexibility to implement it for an arbitrary pair

of hash functions. Finally, note that since for digest translation

our “batch” is the set of all the leaves, we do not need to compute
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the canonical digest. The optimized circuit for digest translation is

shown in Fig. 7.

Alternative ways to implement digest translation.While we will be

using Reckle+ Trees to implement digest translation, we want to

emphasize that are other approaches to do so. One way to do it

is to build a monolithic circuit that builds both a Poseidon and a

Keccak tree. Another approach is to have a recursive SNARK proof

that takes the proof of digest translation from the previous state,

inclusion proofs under both hash functions, and the updated values

and digest to compute an updated proof of digest translation using

recursive SNARKs. However, this approach is not parallelizable as

each update to the tree has to be computed sequentially in the proof

one at time. At the same time, updating the proofs cannot be done

with a circuit that is proportional to the number of updates, since the

shape of circuit depends on which leaves are updates (Anticipating

all possible updates by computing different verification keys will

lead to an exponential number of keys.) Due to the exponential

issue of the second approach, we use the monolithic approach as the

baseline in our implementation. As we will see, with the monolithic

approach, we run into significant memory issues quite fast.

Updatable BLS key aggregation. Consider the following set-

ting: BLS public keys of 𝑛 validators are stored in the memory of a

smart contract. The goal is to calculate the aggregated public key

of a subset of validators, denoted as 𝐼 , and the cardinality of this

subset 𝐼 to establish the fraction of validators that have signed the

message. However, subset 𝐼 can change across blocks. The problem

of computing aggregated public key and the cardinality on-chain

is useful in emerging real-world blockchain systems (e.g., Proofs

of Ethereum Beacon Chain consensus or EigenLayer restaking). In

these systems, validators attest to the results of some specific com-

putational task, and new tasks can arrive periodically. An existing

approach is to attach a SNARK proof along with the aggregated

public key and the cardinality of the attestor subset. However, this

requires recomputing the SNARK proof from scratch every time

when the subset changes. Additionally, this also requires computing

a new proof from scratch whenever the initial set changes even if

the subset stays the same.

Reckle+ Trees enable us to prove that an alleged aggregate BLS

public key 𝑎𝑝𝑘 is the product of a subset of 𝑡 individual BLS keys

from a set of BLS keys stored at the leaves of a Merkle tree whose

digest is 𝑑 . At the same time, this proof will be updatable in case

this set changes. For the BLS aggragation application, we define

the Map/Reduce functions as follows:

• Map: Takes a public key 𝑔sk as input, and returns (1, 𝑔sk),
if sk has signed the message, else (0, 1G), where 1G is the

identity of group G.
• Reduce: Takes two elements (𝑐𝑛𝑡𝐿, 𝑔sk𝐿 ) and (𝑐𝑛𝑡𝑅, 𝑔sk𝑅 ),

and returns (𝑐𝑛𝑡𝐿 + 𝑐𝑛𝑡𝑅, 𝑔sk𝐿 × 𝑔sk𝑅 ).
The circuit for BLS key aggregation is shown in Fig. 8 and the

Reckle+ Trees data structure for BLS key aggregation is shown

in Fig. 9. Note that, just like in digest translation, we do not need

to comptute canonical hashing for the BLS key aggregation.

Other applications. Our Map/Reduce framework can be applied

to real-world applications involving decentralized finance (DeFi)

that require computation over on-chain states that spans multiple

𝜋
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Figure 9: Reckle+ Trees data structure to compute the ag-

gregated BLS public key and cardinality of the attestor set.

Consider a vector of size 8 and attestor subset 𝐼 = {2, 4, 5}.
Every node 𝑣 in the path from root to leaves of 𝐼 , stores the

Merkle hash, the recursive SNARK proof, and results of Map
or Reduce operation, and every sibling of 𝑣 stores just the

Merkle hash.

concurrent blocks. Examples of these applications include calculat-

ing moving averages of asset prices, lending market deposit rates,

credit scores or airdrop eligibility. In these applications, a compu-

tation must be applied across the states of a contract or group of

contracts for the n most recent blocks of a given blockchain, where

n is a fixed number. These computations must then be updated

continually whenever new blocks are added to the blockchain. The

natural updatability of Reckle Trees allows it to be extended to

use-cases where a proof must be generated across tens of thousands

of consecutive blocks of historical data.

For example, an on-chain options protocol may want to price an

option using the volatility of an asset over the past n blocks on a

decentralized exchange on Ethereum. The proof of the volatility

must then be updated every 12 seconds as new blocks are added. The

naive approach would require computing a proof of the volatility

across the past n blocks from scratch, every 12 seconds.With Reckle

Trees, this computation would only require updating the portion

of the proof associated with the computation done on the oldest

block with a proof of computation done on the new block.

5 EVALUATION

In this section, we evaluate the performance of Reckle Trees and

the applications enabled by Reckle+ Trees. Recall that Reckle

trees are naturally parallelizable regardless of the underlying proof

system used to compute the recursive SNARK proofs. To realize

the benefits of construction, we design and implement a large scale

distributed system for distributed proof generation.

5.1 Distributed proof generation

In this subsection, we describe the architecture (Fig. 10) of our

distributed system, designed to enable efficient proof generation.

At its core, our distributed system is driven by real-time events,

which enables seamless addition of computation resources without

degrading the performance. Logically, our system has five main
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Figure 10: Distributed system architecture.

components: Planner, Executor, Worker, Message Queue, and Stor-

age. The Planner is responsible for dividing a task into subtasks

and generating a computational graph structure that describes the

dependencies between the subtasks. Using the computational graph

from the Planner, the Executor schedules the subtask for execution

by injecting them in the Message Queue and retrieving results of

the completed subtasks. The Workers are responsible for fetching

subtasks from the message queue, completing the subtasks, and

placing the results in the message queue.

Our implementation is in Rust language and we use Redis server

for messaging. We deployed our distributed system on Kubernetes

cluster inside AWS datacenter. Our system also heavily relies on

AWS S3 storage to store intermediate job results. We use AWS

c7i.8xlarge EC2 instances (32vCPU, 64 GiB memory) as worker

nodes.

5.2 Batch updates and aggregation

In this subsection, we present the performance of aggregation,

batch update, and batch proof verification. Specifically, we show

that batch updates in our construction is 11× to 15× faster than base-
line, and that our our distributed systems can achieve up to 270×
performance improvement over the sequential implementation of

Reckle Trees.

Recall that our construction extends Merkle trees. Thus, we

compare the performance of our batch operation with prior known

Merkle proof aggregation using SNARKs [17] and Inner-product

arguments based aggregation in Hyperproofs [20], which improves

upon the Merkle SNARKs aggregation techniques.

Our implementation is in Rust, and we use Plonky2 [18] for our

batch proof construction. Thus, a field element corresponds to a 64-

bit value from the Goldilocks field. We run our all experiments on

Amazon EC2 c7i.8xlarge instance. Both our implementation and the

baselines make full use of the parallelism offered by the underlying

framework in all our experiments. However, our distributed imple-

mentation additional uses the natural parallelism offered by our

construction. The Merkle tree in our construction and the baseline

uses the Poseidon hash function [11].

Experimental setup. We set the vector size to 𝑛 = 2
27

and

study the performance of our scheme for varying batch sizes 𝑘 =

{22, 24, . . . , 212}. In each run, we randomly generate a Merkle tree

and select a random set of leaves to batch/update.

For baseline experiments, we use the following:

(1) Merkle proof aggregation using Groth16 SNARKs [12, 17]

by Ozdemir et al. Specifically, we use the fork of the Rust im-

plementation that was used in Hyperproofs to benchmark

Merkle SNARKs [16, 17, 20].

(2) Inner-product arguments based aggregation inHyperproofs:

We use the golang based implementation that was provided

in Hyperproofs [20].

Note that both these constructions are not easily amenable to dis-

tributed proving. Thus we run baseline experiments on a single

machine, but we exploit all the parallelism offered by the underlying

framework.

We implement the bucket variant of Reckle Trees, with bucket

size 2
5
and compare the performance against the above baselines

in the following settings:

(1) Standard: In this implementation of aggregation, each node

of the batch proof data structure is constructed sequentially

on the same machine.

(2) Distributed proof generation: In this implementation of ag-

gregation, we use the distributed system from Section 5.1 to

compute the SNARK proofs in the batch tree data structure.

Specifically, in our experiments, we use a cluster of 192

workers, where each worker is responsible for computing

at most three Plonky2 proofs simultaneously.

Public parameters. The proving keys in Hyperproofs andMerkle

SNARKs are approximately around 12 GiB and 6 GiB, respectively.

This is because, in Hyperproofs, the size of public parameters is

linear in the size of the vector. Whereas, in the Merkle SNARKs

it is linear in the size of the batch and depth of the Merkle tree.

However, in Reckle Trees, the proving is 3.62 GiB in total, as the

prover key in our scheme depends only on the depth of the Reckle

tree.

The verification key in our approach is at most 1.85 KiB. However,

in Hyperproofs and Merkle SNARKs, the verification keys are in

the order of around 10 MiB.

Prover time. In Fig. 11a, we show that the distributed implemen-

tation of Reckle Trees is 3.15× to 270× faster than the sequential

implementation.

The distributed version of Reckle Trees has faster proving time

(123 seconds) when compared with Groth16 [12] based Merkle

SNARKs aggregation (4.44 minutes) and Hyerproofs (3.15 minutes).

But, the sequential implementation of Reckle Trees is substantially

slower than the baselines. However, as we argue in the previous

sections, this is a one-time cost, but allows fast updates enabling

many potential applications.

The aggregation of Hyperproofs outperforms other approaches

in Fig. 11a. However, Hyperproofs trades this for a large proof size

and increased verification times.

Verification time and proof size. The batch proof in our scheme

is 112 KiB. To verify a batch proof, the verifier first needs to compute

the canonical digest of the batch. Then the verifier invokes the

Plonky2 verifier with the computed canonical digest and the digest

of the vector to check the validity of the proof. In our experiments,

for a batch size of 2
12

proofs, it takes 14.29 ms to compute the

canonical digest and 3.91ms to verify the Plonky2 proof.We include

the cost of computing canonical digest in Fig. 11b. However, a batch

11



0 2 4 6 8 10 12
Batch size (log2 scale)

10−1

100

101

102

103

104

P
ro

vi
ng

tim
e

(s
)

Hyperproofs
Merkle (Groth16)
Reckle (dist.)
Reckle (single)

(a) Aggregation

0 2 4 6 8 10 12
Batch size (log2 scale)

10−3

10−2

10−1

100

101

Ve
rifi

ca
tio

n
tim

e
(s

)

Hyperproofs
Merkle (Groth16)
Reckle (dist. & single)

(b) Verification

0 2 4 6 8 10 12
Batch size (log2 scale)

10−1

100

101

102

U
pd

at
e

tim
e

(s
)

Hyperproofs
Merkle (Groth16)
Reckle (dist. & single)

(c) Updates

Figure 11: The 𝑥-axis is # of proofs being aggregated. We use the 128-bit variant of Poseidon.

proof in Hyperproofs is 52 KiB and takes around 27.03 seconds to

verify. Similarly, a batch proof in Merkle SNARKs is 192 bytes and

takes around 87 ms to verify. Since Merkle SNARKs use Groth16

proof system, the proof verification involves constant number of

pairings and a multi-exponentiation of size 2𝑘 + 1. We run the

Merkle SNARKs verifier implemented in [20] and report the results

in Fig. 11b.

Batch updates. In our experiments, we randomly sample an

element from the batch to update. Updating a batch proof in Reckle

Trees involves re-computing the recursive SNARK proofs just along

the path from leaf to the root. Thus, it is possible to update the batch

proof in logarithmic time. We observe that the cost of updating a

single proof within a batch of 2
12

values is 16.61 seconds.

However, both Merkle SNARKs and Hyperproofs do not sup-

port updatable batch proofs. Thus, both these schemes have to

recompute the batch proof from scratch whenever an element in

the batch changes. For a batch size of 2
12

values, Merkle SNARKs

and Hyperproofs require 4.44 and 3.15 minutes, respectively, to

recompute the batch proof. Thus, as shown in Fig. 11c, Reckle

Trees is around 11× and 15× faster than Hyperproofs and Merkle

SNARKs, respectively when the batch is 2
12
.

Besides updating an element inside the batch, our construction

can also efficiently update the size of the batch. In contrast, both

Merkle SNARKs and Hyperproofs require an apriori bound on the

maximum size of the batch. Additionally, Merkle SNARKs incur

proving cost proportional to the maximum batch size regardless of

the number of elements in the batch. Whenever the batch size is

insufficient, Merkle SNARKs require a setup with new “powers-of-

tau” and circuit specific parameters. Reckle Trees does not suffer

this limitation, allowing for flexibility in adjusting the batch size as

required.

5.3 Applications

In this subsection, we evaluate the performance of Reckle+ Trees

for the digest translation and BLS key aggregation.

Experimental setup. For both digest translation and BLS public

key aggregation, we implement the Reckle+ Trees and the baseline

circuits in Plonky2 [18]. However, we use the distributed system

from Section 5.1 with identical configuration, instance types, and

the number of workers for our experiments in this section.
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Figure 12: Prover and update cost for dynamic digest trans-

lation. We extrapolate baselines due to insufficient memory

for the SNARK prover. For height of tree [1, 7], the base-

line proving times are [0.34, 1.36, 2.80, 5.86, 12.15, 25.59, 54.21]
seconds, respectively.
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Figure 13: Prover and update cost for the BLS application. We

extrapolate baseline due to insufficient memory.

For digest translation, the baseline circuit is a monolithic circuit

that recomputes the Merkle tree inside the circuit using both Po-

seidon and Keccak hash functions. Since Plonky2 does not support

distributed proving, we run the baseline on a single machine. We

observe that even for trees with 2
8
leaves, the baseline implemen-

tation runs out of memory (64 GiB) while computing the Plonky2

proof. Thus we extrapolate the performance of the baseline imple-

mentation for larger tree sizes. However, our distributed variant of

Reckle+ Trees scales even for 8 million leaves!

For the BLS public key aggregation (Reckle+ Trees and the

baseline), we assume that the public keys are stored in a Merkle

tree of height 21. To implement Reckle+ Trees, we use a fork of

Plonky2-BN254 library [19], which implements the BN254 group

operations non-natively on Goldilocks field. However, to implement
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the baseline, we repurpose Reckle+ Trees’s circuit and additionally

include the cost of hashing operations to simulate the membership

proof verification. Similar to digest translation, we observe that the

baseline implementation runs out of memory while computing a

Plonky2 for modestly subset sizes. Thus, we extrapolate values for

comparison.

Prover. We observe that distributed Reckle+ Trees takes around

1.25 hours to compute the batch data structure for the digest trans-

lation application. However, we estimate (Fig. 12a) that Reckle+

Trees is 200× faster than the baseline implementation. Similarly,

for BLS public key aggregation, we estimate Reckle+ Trees to be

faster than the baseline for larger batch sizes.

Updates. For the digest translation application, the cost of a sin-

gle update is logarithmic in the capacity of the tree. However, the

baseline implementation requires work linear in the capacity of

the tree. In our experiments, we observe that for tree height of 7,

the baseline approach requires 54.21 seconds to update a single

leaf. However, Reckle+ Trees requires 4.49 seconds, which is 12×
faster than the baseline. Similarly, in the BLS application, we ex-

pect Reckle+ Trees to be 6× faster than the baseline. We observe

comparable verification times (3-6ms) and proof sizes (110-120KiB)

for the baseline and Reckle+ Trees in both applications.
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A SOUNDNESS PROOF

Proof of Theorem 3.1. Following the notation fromDefinition 2.4,

suppose the adversary outputs a commitment C, two element sets

{𝑎𝑖 }𝑖∈𝐼 and {𝑎′𝑗 } 𝑗∈ 𝐽 , two batch proofs 𝜋𝐼 and 𝜋 𝐽 such that the

canonical digest of {𝑎𝑖 }𝑖∈𝐼 is 𝑑 (𝐼 ), the canonical digest of {𝑎′𝑗 } 𝑗∈ 𝐽
is 𝑑 (𝐽 ) and

1← 𝑆𝑁𝐴𝑅𝐾.Verify(vkB , (vkB ,C, 𝑑 (𝐼 )), 𝜋𝐼 ))
and

1← 𝑆𝑁𝐴𝑅𝐾.Verify(vkB , (vkB ,C, 𝑑 (𝐽 )), 𝜋 𝐽 ))
while there exists 𝑘 ∈ 𝐼 ∩ 𝐽 such that 𝑎𝑘 ≠ 𝑎′

𝑘
.

Due to SNARK knowledge soundness, we can extract the batch-

proof data structuresΛ𝐼 andΛ𝐽 . Since 𝑘 ∈ 𝐼∩ 𝐽 ,Λ𝐼 andΛ𝐽 will both
contain path 𝑝𝑘 in common. Since both recursive proofs verified,

and unless the adversary is able to break collision resistance, all

nodes 𝑣 on these paths (along with their sibling nodes) must have

the same Merkle hash values C𝑣 . However, the last node that is
extracted on Λ𝐼 ’s 𝑝𝑘 path has to be 𝑎𝑘 (by collision resistance

with respect to canonical digest 𝑑 (𝐼 )) and the last node that is

extracted on Λ𝐽 ’s 𝑝𝑘 path has to be 𝑎′
𝑘
(by collision resistance with

respect to canonical digest 𝑑 (𝐽 )). By assumption, 𝑎𝑘 ≠ 𝑎′
𝑘
. This is a

contradiction. Therefore, soundness holds. □
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